Actinide Chemistry


Lanthanide/Actinide Chemistrypubs.acs.org/doi/pdf/10.1021/ba-1967-0071.ch006Similarchemically related /-shell groups nea...

2 downloads 110 Views 2MB Size

6

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch006

Fluorite-Related Oxide Phases of the Rare Earth and Actinide Elements LEROY

EYRING

Arizona State University, Tempe, Ariz. Cerium, praseodymium, and terbium oxides display homologous series of ordered phases of narrow composition range, disordered phases of wide composition range, and the phenomenon of chemical hysteresis among phases which are structurally related to the fluorite-type dioxides. Hence they must play an essential role in the satisfactory development of a comprehensive theory of the solid state. All the actinide elements form fluorite-related oxides, and the trend from ThO to CmO is toward behavior similar to that of the lanthanides already mentioned. The relationships among all these fluorite-related oxides must be recognized and clarified to provide the broad base on which a satisfactory theory can be built. x

x

' H p h e i n c e n t i v e for s c h e d u l i n g a s y m p o s i u m o n the c h e m i s t r y of

the

l a n t h a n i d e s a n d a c t i n i d e s is d e r i v e d i n p a r t f r o m the v a l u e of e x a m i n i n g the s i m i l a r i t i e s a n d i n t e r r e l a t i o n s h i p s w h i c h exist b e t w e e n analogous sequences of elements.

these

T h e c h e m i c a l analogies w h i c h

first

suggested the i n g e n i o u s a c t i n i d e hypothesis m a n y years ago are n o w w e l l d e v e l o p e d a n d g e n e r a l l y r e c o g n i z e d . It is n o w possible to go b e y o n d this to e x a m i n e subtle s i m i l a r i t i e s a n d v a r i a t i o n s . I n d e e d , i n the t w o c h e m i c a l l y r e l a t e d / - s h e l l groups n e a r l y one t h i r d of the k n o w n elements p r o v i d e e x t e n d e d series of elements a n d c o m p o u n d s w h o s e properties v a r y c o n t i n u a l l y i n e a c h sequence b u t w i t h o v e r l a p to p r o v i d e one of the most v a l u a b l e testing g r o u n d s i n a l l of c h e m i s t r y for a n y t h e o r y w h i c h may

be advanced.

T h e i s o m o r p h i s m e x i s t i n g a m o n g the oxides of the

a c t i n i d e a n d l a n t h a n i d e elements i n the c o m p o s i t i o n r a n g e R O ^ , 1.5

<

x < 2.0, gave e a r l y s u p p o r t to the a c t i n i d e h y p o t h e s i s , b u t n o w a m o r e c a r e f u l s c r u t i n y of the details is possible a n d s h o u l d l e a d to a greater a p p r e c i a t i o n of the q u a l i t y of the v a r i a t i o n i n c h e m i c a l b e h a v i o r a l o n g 67

Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.

68

LANTHANIDE/ACTINIDE

CHEMISTRY

the t w o series. W e are not d i s c o u r a g e d b y the fact t h a t oxides i n this c o m p o s i t i o n r a n g e b e h a v e n e i t h e r l i k e l a n t h a n u m n o r a c t i n i u m oxides. P e r h a p s of greater significance is that this d o u b l e sequence of c o m p l e x oxides w i l l p l a y a c e n t r a l r o l e i n e l u c i d a t i n g the n a t u r e of n o n s t o i c h i o m e t r y i n c h e m i c a l systems.

T h e p h e n o m e n a of o r d e r e d i n t e r m e d i a t e

phases of n a r r o w c o m p o s i t i o n

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch006

phases

of

(homologous series), nonstoichiometric

widely variable composition

resulting from

order-disorder

transformations, a n d c h e m i c a l hysteresis are e x h i b i t e d a m o n g t h e m w i t h u n u s u a l v a r i a t i o n . T h e entire q u e s t i o n of the n a t u r e of n o n s t o i c h i o m e t r i c b e h a v i o r is r a p i d l y a p p r o a c h i n g a n e w l e v e l of u n d e r s t a n d i n g , a n d c o n t i n u e d c a r e f u l d e v e l o p m e n t of k n o w l e d g e of these oxides is necessary i n e v o l v i n g the t o t a l p i c t u r e . T h e state of k n o w l e d g e of these o x i d e systems is not yet r e a d y for a f u l l r e v i e w . R a t h e r , this d i s c u s s i o n sketches the present state of k n o w l e d g e w h i c h is f a i r l y c o m p l e t e for some o x i d e systems, s k i m p y for others, a n d v i r t u a l l y nonexistent for a f e w , w i t h the h o p e that i t s h a l l b e c o n t i n u e d u n t i l this m o t h e r l o d e s h a l l h a v e b e e n e m p t i e d of h e r treasure. Studies a n d discussions of the past several years h a v e l e d to the r e a l i z a t i o n t h a t b i n a r y i n o r g a n i c c o m p o u n d s of elements e x h i b i t i n g a l t e r v a l e n t c h a r a c t e r , s u c h as the t r a n s i t i o n m e t a l oxides, t e n d to s h o w a n u n m i x i n g of p r e v i o u s l y o b s e r v e d ranges of c o m p o s i t i o n i n t o a sequence of o r d e r e d phases b e l o n g i n g to a n h o m o l o g o u s series w h o s e structures are r e l a t e d b y some s i m p l e s t r u c t u r a l p r i n c i p l e . T h e earliest i n d i c a t i o n s of this w e r e seen b y Magnéli (36, 37) o n the m o l y b d e n u m - o x y g e n

system

a n d h a v e b e e n e n l a r g e d a n d e x t e n d e d b y h i m a n d his colleagues to a w i d e r a n g e of t r a n s i t i o n m e t a l oxides. A g e n e r a l r e v i e w of the extent of s u c h studies a n d the s t r u c t u r a l p r i n c i p l e s i n v o l v e d has b e e n p r e s e n t e d b y W a d s l e y (48),

w h o has greatly e x t e n d e d o u r k n o w l e d g e of o r d e r e d i n t e r -

m e d i a t e phases.

N o n s t o i c h i o m e t r y has b e e n discussed i n d e t a i l over the

years b y A n d e r s o n (5, 6), w h o has r e c e n t l y s y n t h e s i z e d the extant ideas. T h e g e n e r a l p a t t e r n of b e h a v i o r of m e t a l oxides c a p a b l e of v a r i a t i o n i n c o m p o s i t i o n is to f o r m a h o m o l o g o u s series of phases h a v i n g some s i m p l e r e l a t i n g s t r u c t u r a l p r i n c i p l e , a n d d i s o r d e r e d phases of w i d e c o m p o s i t i o n r a n g e i n w h i c h the d i s o r d e r is not at the l e v e l of p o i n t defects b u t r a t h e r of d e f e c t complexes or d o m a i n s of the o r d e r of five to 20 u n i t cells i n l i n e a r d i m e n s i o n — i . e . , there is short- b u t not l o n g - r a n g e order.

Coherence

m a k e s s u c h phases t h e r m o d y n a m i c a l l y stable. T h e o c c u r r e n c e of h y s t e r e sis, the m a g n i t u d e of the t h e r m o c h e m i c a l p r o p e r t i e s , as w e l l as c o n s i d erations of the e n e r g y r e q u i r e m e n t for l a r g e concentrations defects, suggest that s u c h d o m a i n structures exist (11,

of

point

28).

It m u s t b e k e p t i n m i n d that each n o n s t o i c h i o m e t r i c system is u n i q u e , a n d t h a t e a c h o r d e r e d phase, e a c h p o l y m o r p h , a n d e a c h d i s o r d e r e d phase has its o w n range of s t a b i l i t y .

W h e n e v e r tangents to the free

Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.

energy

6.

EYRING

Oxide

curves (G,x)

69

Phases

for the v a r i o u s stable phases c a n be c o n s t r u c t e d , t w o - p h a s e

regions are i n d i c a t e d . S u c h t w o - p h a s e regions are u s u a l l y r e a l i z e d o n l y for the lowest surfaces i n a n y r e g i o n of Τ a n d x. T h i s means t h a t n o t w o o x i d e systems are e x p e c t e d to b e i d e n t i c a l b u t w i l l v a r y as the s t a b i l i t y ranges of a l l possible species dictate. It is c o n v e n i e n t to discuss the most t h o r o u g h l y s t u d i e d o x i d e systems a n d e s t a b l i s h a n o m e n c l a t u r e for the

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch006

phases w h i c h c o u l d b e e x p e c t e d

i n e a c h of the o x i d e systems of

the

l a n t h a n i d e a n d the a c t i n i d e elements.

Fluorite Related Phases in the Rare Earth Oxides C o m p r e h e n s i v e studies of the P r O - 0 x

2

system h a v e c u l m i n a t e d i n a

d e t a i l e d p a p e r b y H y d e et al. ( 3 0 ) , w h o r a t i o n a l i z e p r e v i o u s w o r k a n d d e s c r i b e i s o b a r i c studies w h o s e results w e r e a p o w e r f u l t o o l i n e x p o s i n g the i n t r i c a c i e s of that system.

The T b O - 0 x

s t u d i e d b y H y d e a n d E y r i n g (32) results of p r e v i o u s TbO -Q x

(13).

2

2

system has l i k e w i s e b e e n

u s i n g the i s o b a r i c t e c h n i q u e a n d the

studies r e v i e w e d

a n d discussed.

system is c o m p a r e d w i t h that of P r O - 0 x

References

I n a d d i t i o n , the (30)

2

and C e O - 0 x

details a n d for a d i s c u s s i o n of p r e v i o u s w o r k .

B r a u e r (15,

has r e ­

16)

c e n t l y r e v i e w e d c u r r e n t studies o n a l l the rare e a r t h oxides.

0

2

13, 30, a n d 32 s h o u l d b e c o n s u l t e d for e x p e r i m e n t a l

10

1.50

20

30

Weight change, mg 40 50 60 70

1.60

1.70

1.80

Projection

of the PrO ~O x

z

90

1.90

Composition, χ in PrO Figure 1.

80

100

2.00

x

phase diagram

Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.

70

LANTHANIDE/ACTINIDE A phase d i a g r a m of the system P r O , 1.5 < a ;

χ <

CHEMISTRY

2 . 0 , is s h o w n i n

F i g u r e 1. A p p a r e n t i n this d i a g r a m are a n h o m o l o g o u s series ( R » 0 „ _ , 2

η =

2

4 , 7 , 9 , 1 0 , 1 1 , 1 2 ) of phases of n a r r o w c o m p o s i t i o n range w h i c h d e ­

c o m p o s e to g i v e d i s o r d e r e d n o n s t o i c h i o m e t r i c phases at h i g h e r t e m p e r a ­ ture. P h a s e designations a d o p t e d for this system, s h o w n i n T a b l e I, s h a l l

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch006

b e u s e d h e r e to i n d i c a t e phases b e l i e v e d to b e i s o m o r p h o u s or analogous. Table I.

Members of the R C>2n - 2 Series and Disordered Phases of the Rare E a r t h Oxides

ue of η 4

n

Stoichiometric formula C e 0 (hex.) P r 0 (hex.) T b O (hex.) T b 0 (moncl.) P r 0 (b.c.c.) T b 0 (b.c.c.) CeOi ± δ PrO ± δ TbO ± δ Ce 0 Pr 0 Tb 0 Ce 0 Pr»O Ce 0 Pr O 2

3

2

Phase symbol

χ in RO

w

1.500

A

1.500 1.500

Β C

1.5-1.7

σ

3

2

s

2

3

2

3

2

3

6

i e

l e

7

7

1 2

7

9

1.714

ι

1 2

7

1 2

9

1 6

1.778

ζ

1.800

e

1.818

δ

1.833

β

1.7-2.0

a

2.000

F

l e

10

5

9

B

e

11 Pr O TbuO Pr O Tb O (?) CeOi j + δ PrO + δ TbOx.7 + δ ( ? ) Ce0 Pr0 TbQ n

2 0

6

n

2 0

12

e

n

x

00

7

2

2

2

Praseodymium

dioxide

c r y s t a l l i z e s i n the

fluorite-type

structure

( s p a c e g r o u p F m 3 r a ) w i t h f o u r p r a s e o d y m i u m atoms a n d e i g h t o x y g e n atoms p e r u n i t c e l l . T h i s s t r u c t u r e m a y b e v i s u a l i z e d e a s i l y as a n infinite a r r a y of c o o r d i n a t i o n cubes ( e a c h c o n s i s t i n g of a P r a t o m at the center w i t h e i g h t Ο atoms at the c o r n e r s )

s t a c k e d so that a l l c u b e edges are

shared. If one v i e w s this c o n f i g u r a t i o n at r i g h t angles to the b o d y d i a g o n a l of one of the cubes ( p e r p e n d i c u l a r to the < 1 1 1 > axis of the u n i t c e l l ) ,

Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.

6.

EYRING

Oxide

71

Phases

planes c o n t a i n i n g o n l y m e t a l or o x y g e n sequence Ac aCb

cBa

atoms a p p e a r s t a c k e d i n the

h A, w h e r e c a p i t a l letters represent m e t a l planes

a n d l o w e r case letters those of o x y g e n

(23).

T h e C - t y p e rare e a r t h s t r u c t u r e ( space g r o u p Ia3 ), w h i c h is the other e n d - m e m b e r of the

fluorite-related

series of phases, has the same s t a c k i n g

sequence, b u t o n e - f o u r t h of the oxygens are m i s s i n g f r o m e a c h

oxygen

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch006

p l a n e i n a n o r d e r e d w a y . T h e result of this o r d e r i n g is that i n the C - t y p e s t r u c t u r e a l l the o x y g e n vacancies m a y be c o n s i d e r e d as l a y i n g i n strings a l o n g the f o u r < 1 1 1 >

d i r e c t i o n s of the fluorite c e l l .

T h e s e strings are

n o n - i n t e r s e c t i n g , a n d their closest a p p r o a c h removes oxygens f r o m the face d i a g o n a l s of the i n t e r v e n i n g [ R O ] cubes g i v i n g six c o o r d i n a t i o n of s

one of t w o types to a l l the m e t a l atoms. T h e i n t e r m e d i a t e o r d e r e d phases o b s e r v e d i n the rare e a r t h oxides h a v e structures w h i c h are o b v i o u s l y r e l a t e d to those of the e n d - m e m b e r s d e s c r i b e d a b o v e i f one compares

the x - r a y d i f f r a c t i o n patterns

T h e structure of the t phase, P r O i , has b e e n d e t e r m i n e d . 7

(46).

It m a y b e

2

r e p r e s e n t e d i n terms s i m i l a r to those u s e d a b o v e b y v i s u a l i z i n g it as c o n s i s t i n g e n t i r e l y of the strings of six c o o r d i n a t e d m e t a l atoms r u n n i n g i n one

direction only.

T h e c r e a t i o n of the s t r i n g

generates

" s h e a t h s " of seven c o o r d i n a t e d m e t a l atoms s u r r o u n d i n g i t f o r m i n g a r o d . W h e n these rods are a l i g n e d p a r a l l e l to one another y i e l d i n g the P r O i T

2

s t r u c t u r e (23, 31, 32, 46) o n l y six a n d seven c o o r d i n a t i o n exists. It is s u g ­ gested (32)

t h a t the strings are the s t r u c t u r a l e n t i t y r e l a t i n g a l l the i n t e r ­

m e d i a t e oxides a n d the e n d - m e m b e r s . S i n c e 1 / n t h of the cations are i n the strings a n d e a c h c a t i o n has t w o of its o r i g i n a l eight oxygens m i s s i n g , a composition R 0 n 2

=

R, 0 „_ ?

2

T h e other phases w i t h η > r u n n i n g i n o n l y one < 1 1 1 >

2

is o b s e r v e d .

7 are b e l i e v e d to consist also of strings

d i r e c t i o n , b u t for e a c h of these there m u s t

b e i n c r e a s i n g regions of [ R O ] groups as the c o m p o s i t i o n P r 0 s

2

(η =

oo )

is a p p r o a c h e d . T h e d i s o r d e r e d σ phase is b e l i e v e d to consist of a C - t y p e oxide, w i t h some of the o x y g e n positions a l o n g the strings

filled,

i n t e r r u p t i n g the

strings b u t m a i n t a i n i n g the c u b i c s y m m e t r y . T h e a phase, o n the other h a n d , m u s t consist of a w i t h segments

of

strings b u n d l e d together

o x y g e n is lost f r o m the P r 0

2

matrix as

structure. T h e b u n d l e s are b e l i e v e d to b e

at r a n d o m a l o n g the f o u r < 1 1 1 > cubic symmetry.

fluorite-type

i n i n c r e a s i n g amounts

d i r e c t i o n s of the fluorite c e l l p r e s e r v i n g

W h e r e the b u n d l e s so o r i e n t e d a p p r o a c h e a c h other,

regions of C - t y p e are created.

T h i s is suggested b y the w e a k s u p e r ­

structure reflections i n x - r a y d i f f r a c t i o n f r o m the a phase of the C e 0 - Y 0 2

m i x e d oxides (12).

2

3

T h e complexes of rods are not fixed i n the α p h a s e

b u t are free to translate. T h e α-σ m i s c i b i l i t y g a p represents the r e g i o n i n w h i c h the l a b i l e a transforms to the r i g i d σ.

Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.

72

LANTHANIDE/ACTINIDE

P r o p o s e d p a r t i a l (T,x)

phase d i a g r a m s for the C e O

x

CHEMISTRY

(13) and T b O

x

( 32 ) are s h o w n i n F i g u r e s 2 a n d 3. T h e existence of some of the h o m o l o ­ gous series are seen i n e a c h , b u t the p r i n c i p l e feature is the w i d e r a n g e of σ a n d a phases w i t h a m i s c i b i l i t y gap. —r—

12

1 f

hk

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch006

10 1 X Ρ 6

\\

Ί

-

-

a

\

8

ϊ

\

*—

4 -L L

i

1.5

1.6

-r|-σ

U

ι

1.7 1.8 1.9 χ i n Ce O

i

2.0

x

Figure 2.

Figure 3.

Projection of the phase diagram

Projection

CeO O

of the TbO -0

x

x

2

2

phase diagram

A l l three p o l y m o r p h s of the rare e a r t h sesquioxides are s h o w n b y either C e 0 (A-type), P r 0 ( A a n d C - t y p e ) or T b 0 (A, B, a n d C - t y p e ) . M u c h w o r k is n o w u n d e r w a y o n the existence a n d r e l a t i o n s h i p 2

3

2

3

2

3

Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.

6.

EYRING

Oxide

73

Phases

of these three types, a n d there is a great d e a l of d i s a g r e e m e n t as to w h e t h e r t h e y d o i n fact represent p o l y m o r p h s i n the t h e r m o d y n a m i c sense.

B r a u e r (15,

16)

r e v i e w s progress i n this area of r e s e a r c h to the

e n d of 1965, b u t c o n s i d e r a b l e w o r k has b e e n r e p o r t e d since t h e n w i t h l i t t l e agreement.

T h e areas of h i g h t e m p e r a t u r e t r a n s f o r m a t i o n are d i s -

cussed b y F o ë x (24, 2 5 ) , w h o has o b s e r v e d phase transitions u p to the

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch006

m e l t i n g p o i n t of the oxides; b y B o g a n o v a n d R u d e n k o (14) kova and Boganov

(27)

and Glush-

w h o address themselves to r e v e r s i b i l i t y of the

transitions a n d the differences i n c o m p o s i t i o n ; b y H o e k s t r a ( 2 9 ) ,

who

reports extensive w o r k o n the pressure d e p e n d e n c e of the transitions a n d reversibility among them.

Fluorite Related Phases of the Actinide Metal Oxides A l l the a c t i n i d e elements w h o s e oxides h a v e b e e n s t u d i e d c a n b e m a d e as

fluorite-type

d i o x i d e s . F o r most of t h e m this is t h e i r most stable

f o r m i n a i r at r o o m t e m p e r a t u r e .

The

fluorite-related

phases of

each

a c t i n i d e e l e m e n t k n o w n w i l l b e discussed i n d i v i d u a l l y b e f o r e a c o m p a r i son is m a d e w i t h the r a r e e a r t h oxides Th0

Thorium. b u t i t forms

2

(45).

is one of the most t h e r m a l l y stable oxides k n o w n ,

a s l i g h t l y oxygen-deficient,

ThOi.998 ( 3 )

dioxide w i t h a =

2

Th0

2

is a

2

is k n o w n , b u t no e v i d e n c e exists

phases w h i c h almost c e r t a i n l y c o u l d b e m a d e .

a ?

fluorite-type

5.999A.

Protoactinium. F l u o r i t e - t y p e P a 0 for P a 0 .

congruently-vaporizing solid

at t e m p e r a t u r e s of a b o u t 2 5 0 0 ° C .

Nonfluorite-

t y p e h i g h e r oxides ( i.e., P a O , ) h a v e b e e n s t u d i e d to some extent. 2

r

U r a n i u m . O f a l l oxide systems i n v e s t i g a t e d , those of u r a n i u m m u s t b e the most t h o r o u g h l y s t u d i e d , r e v e a l i n g i t to b e one of the most c o m p l e x b i n a r y systems k n o w n . W e s h a l l c o n c e r n ourselves h e r e o n l y w i t h the fluorite-related

phases U 0

2

± . A phase d i a g r a m of the r e g i o n of interest x

is s h o w n i n F i g u r e 4, w h i c h is a c o m p o s i t e of the U 0 b y R o b e r t s (43)

2 + x

region proposed

a n d the UO. r e g i o n o b s e r v e d b y M a r t i n a n d E d w a r d s x

(39). T h e extra o x y g e n i n

fluorite-related

t r o n d i f f r a c t i o n studies b y W i l l i s (50)

U0

2 + x

has b e e n l o c a t e d i n n e u -

to b e a c c o m m o d a t e d i n the

fluorite

l a t t i c e b y the g e n e r a t i o n of c o m p l e x groups d e s c r i b e d as 2 : 2 : 2 c o n f i g u r a tions c o n s i s t i n g of t w o i n t e r s t i t i a l oxygens d i s p l a c e d a b o u t 1 A . a l o n g the

d i r e c t i o n f r o m the holes i n the center of the fluorite u n i t c e l l ,

a n d t w o o x y g e n interstitials d i s p l a c e d a b o u t 1 A . a l o n g the < 1 1 1 > t i o n f r o m the t w o n o r m a l sites v a c a t e d .

direc-

T h e positions of the u r a n i u m

atoms are unaffected b y this r e a r r a n g e m e n t . The U 0 4

9

phase results w h e n one of these 2 : 2 : 2 complexes i n e v e r y

t w o u n i t cells of the p a r e n t U 0

2

is l i n k e d together w i t h its n e i g h b o r s i n

a n o r d e r e d w a y . T h e c o m p l e t e s t r u c t u r e is not k n o w n . A t h i g h t e m p e r a -

Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.

74

LANTHANIDE/ACTINIDE

tures the U 0 4

phase m a y exist w i t h c o m p l e x concentrations

2 + x

than i n U 0 .

A c c o r d i n g to A n d e r s o n ( 6 )

9

CHEMISTRY

greater

the t r a n s f o r m a t i o n b e t w e e n

U4O9 a n d U 0 o . 2 5 is a c c o m p a n i e d b y o n l y a s m a l l e n t r o p y increase, 2 +

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch006

i n d i c a t i n g some b u t n o t great d i s o r d e r i n g i n the t r a n s i t i o n .

uo

1.60

1.70

1.80

2

1.90 2.00 χ in UO

2.10

2.20

2.30

x

Figure 4.

Projection

of the U0

2

M a r t i n and E d w a r d s (39) U0 -U 2

U0

2

2

2

T h e l a t t i c e p a r a m e t e r of the U 0

2+W

phase diagram

x

phase as s k e t c h e d i n F i g u r e 4. have observed a U 0

5.4714A., a s i g n i f i c a n t l y l a r g e r u n i t c e l l t h a n for U 0

O / U ratio from a = of \J0

2

d i s p r o p o r t i o n a t e s w h e n c o o l e d to g i v e

a n d U ; h o w e v e r , A c k e r m a n n et al. (2)

of a =

-0

x

h a v e s t u d i e d the phase d i a g r a m for the

r e g i o n , w h i c h shows a U 0 .

Usually hyperstoichiometric U 0

±

4

9 ν

2

phase

2

o-

phase d e c r e a s e d w i t h i n c r e a s i n g

2 + a

5.4705A. for U 0 . V a l u e s of the l a t t i c e p a r a m e t e r s

a n d \] 0 .

end-members U 0

2 0

2

are o n s m o o t h curves l y i n g a b o v e a l i n e j o i n i n g the

and U 0 4

4

(35).

9

5.4453A. ) A c t u a l l y , the U 0

9

( T h e p s e u d o - c e l l of the l a t t e r is a

=

s t r u c t u r e is c u b i c w i t h w e a k s u p e r s t r u c t u r e

lines i n d i c a t i n g that the true u n i t c e l l has a n e d g e of 4a =

21.8A. a n d

the b o d y - c e n t e r e d s p a c e - g r o u p I43e£ ( 5 0 ) . Neptunium.

The

fluorite-type

Np0

2

is the stable o x i d e f o r m e d i n

a i r w h e n n e p t u n i u m oxysalts are d e c o m p o s e d , b u t almost no studies h a v e b e e n c a r r i e d out i n the oxygen-defect

r e g i o n . A c k e r m a n n et al. ( I )

s t u d y i n g the v a p o r i z a t i o n process of N p O ^ . o b s e r v e d A - t y p e N p 0 2

3

in in

q u e n c h e d samples w h i c h h a d b e e n 7 0 % v a p o r i z e d . It is l i k e l y t h a t the t w o phases w e r e f o r m e d f r o m a n o n s t o i c h i o m e t r i c N p 0 . 2

x

phase b y d i s ­

p r o p o r t i o n a t i o n as the s a m p l e w a s c o o l e d .

Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.

6.

EYRING

Oxide

75

Phases

R o b e r t s a n d W a l t e r (44) Np O 3

s

s t u d i e d the i r r e v e r s i b l e d e c o m p o s i t i o n

b u t o b s e r v e d n o phases i n t e r m e d i a t e to N p 0 3

stoichiometric N p 0

2

on

and N p 0 . Hyper-

8

2

has not so f a r b e e n r e p o r t e d .

P l u t o n i u m . G a r d n e r et al. (26)

have made a careful h i g h tempera­

ture x - r a y d i f f r a c t i o n s t u d y of the p l u t o n i u m - o x y g e n system i n the r a n g e f r o m r o o m t e m p e r a t u r e to 9 0 0 ° C . o b s e r v i n g d i f f r a c t i o n f r o m o x i d e s a m ­

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch006

ples c o n t a i n e d i n s i l i c a c a p i l l a r i e s . T h e y r e v i e w b r i e f l y p r e v i o u s apropos

work

of phase transformations (i.e., t h e r m a l a n d e l e c t r i c a l m e a s u r e ­

m e n t s ) a n d construct a phase d i a g r a m as s h o w n i n F i g u r e 5. T h e phases t h e y o b s e r v e d w e r e P u O i ,io ( b . c . c , a =

11.05); P u O i . i

r

(assumed b.c.c, a =

10.99); P u O i .

c o m p o s i t i o n l i m i t of P r 0

(f.c.c, a =

9 8

(f.c.c, a =

2

hex., a — 3.8417 =b 0.0003A., c =

5.396); β P u 0 2

5.9530 ±

6

5.40) w h i c h is the l o w e r (PuOi. io ±

3

0.005

5

0 . 0 0 5 A . ) ; a n d at least one

c u b i c phase of w i d e l y v a r i a b l e c o m p o s i t i o n P u O , 1.61 < tT

χ < 2.0.

Be­

t w e e n 300° a n d 6 0 0 ° C . i n this c o m p o s i t i o n r a n g e there is a m i s c i b i l i t y g a p w h i c h c o n t i n u o u s l y n a r r o w s u n t i l i t is s u p p o s e d l y 1

1

1

i

1

σ

700

I

ι

closed. -

α

500 Ρ 300 . l c + σ — ι 100

1

C+F

1.5

1.6

1.7

1.8

x in PuO Figure

5.

1.9

2.0

x

Projection of the phase diagram

Pu0^0

2

C e r t a i n features of the s t u d y w e r e e m p h a s i z e d s u c h as the fact t h a t a l t h o u g h the P u O i . i phase w a s a s s u m e d b . c . c , the p o w d e r patterns w e r e 6

not g o o d e n o u g h to s h o w the s u p e r s t r u c t u r e lines. A l s o the e u t e c t o i d i n the p r o p o s e d d i a g r a m of C h i k a l l a et al. (22) x - r a y studies.

w a s not o b s e r v e d i n the

N o satisfactory e x p l a n a t i o n of e l e c t r i c a l r e s i s t i v i t y a n d

t h e r m a l e x p a n s i o n measurements w h i c h l e d to this e a r l i e r c o n s t r u c t i o n has e m e r g e d .

G a r d n e r et al. (26)

also l o o k e d for b u t d i d n o t see a n y

i n d i c a t i o n of o r d e r e d i n t e r m e d i a t e phases at l o w temperatures s u c h as w e r e d e s c r i b e d a b o v e for the r a r e e a r t h oxides nor d i d t h e y observe a f a i l u r e of the m i s c i b i l i t y g a p to close as w o u l d h a v e o c c u r r e d i f the e n d members, P u O i i a n d P u O i 6

9 8

, h a d different symmetries.

They

Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.

could

76

LANTHANIDE /ACTINIDE

CHEMISTRY

not, h o w e v e r , h a v e o b s e r v e d a n a r r o w t w o - p h a s e r e g i o n since h i g h reso­ l u t i o n a n d s h a r p d i a g r a m s w o u l d h a v e b e e n r e q u i r e d . O n e c a n observe f r o m t h e i r p u b l i s h e d d a t a t h a t a shift occurs i n slopes of the a vs. χ lines f o r oxides b e t w e e n P u O i . 9 o a n d P u O i i , w h i c h m a y suggest a d i s c o n t i ­ 7

6

7

n u i t y i n this r e g i o n p e r m i t t i n g the c o n s t r u c t i o n of the n a r r o w m i s c i b i l i t y g a p r e q u i r e d i f the P u O i . e i a n d P u O i .

9 8

h a v e different symmetries. A b r i e f

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch006

d i s c u s s i o n of this p o i n t is g i v e n b e l o w . I f this g a p exists, the system bears e v e n greater r e s e m b l a n c e to the c e r i u m o x i d e system a n d for m a n y m i x e d oxides (12)—especially

i f one

assumes t h a t o r d e r i n g u p o n c o o l i n g is b l o c k e d i n some w a y . T h i s is n o t likely, however,

since the h i g h t e m p e r a t u r e d i s o r d e r e d phase

easily b e q u e n c h e d i n other systems.

B r e t t (18)

cannot

f o u n d t h a t samples

q u e n c h e d f r o m 900 ° C . i n l i q u i d n i t r o g e n r e s u l t e d i n a - P u 0 2

and P u 0 .

3

2

T e n s i m e t r i c studies w o u l d h e l p to settle t h e q u e s t i o n of phase r e l a t i o n ­ ships i f one

c o u l d achieve e q u i l i b r i u m r a p i d l y enough

at

reasonable

temperatures a n d the e x t r e m e l y l o w pressures r e q u i r e d . M a r k i n et al. (38)

h a v e d e t e r m i n e d the e.m.f. of h i g h t e m p e r a t u r e

g a l v a n i c cells i n v o l v i n g the p l u t o n i u m o x i d e - o x y g e n system.

T h e plots

of p a r t i a l m o l a l free e n e r g y of o x y g e n vs. t e m p e r a t u r e s h o w a p r o f o u n d c h a n g e i n the c o m p o s i t i o n i n t e r v a l 1.691 a n d 1.812.

I n m a n y respects

the b e h a v i o r of PuO# is q u i t e s i m i l a r to C e O ^ . Americium.

Some years ago A s p r e y a n d C u n n i n g h a m ( 7 )

the t h e r m a l d e c o m p o s i t i o n of P r 0 volume.

2

and A m 0

2

studied

i n a calibrated reaction

T h i s w o r k p r e s a g e d the t e n s i m e t r i c w o n d e r of the

PrO -0 i P

s y s t e m a l r e a d y discussed a n d i n d i c a t e d the r e l a t i v e s i m p l i c i t y of AmOar0

2

system i n the accessible t e m p e r a t u r e range.

to lose o x y g e n s m o o t h l y to a c o m p o s i t i o n of A m O i .

8 5

Am0

2

2

the

appeared

at 1 4 0 0 ° C . w h e r e

it h a d a n e q u i l i b r i u m o x y g e n pressure of 13 m m . H g i n contrast to the m u c h easier b u t i n t e r r u p t e d loss for P r O ^ r e s u l t i n g f r o m the s e v e r a l stable i n t e r m e d i a t e phases. A s p r e y ' s curves d o s h o w some m i n o r breaks i n t h e l o g ρ vs. l/T plots w i t h a c h a n g e of slope at A m O i .

8 7 7

i n one of the r u n s .

It is n o t at a l l c e r t a i n that these are significant since t h e y w e r e n o t cor­ r o b o r a t e d i n the w o r k d i s c u s s e d b e l o w . A recent s t u d y b y C h i k a l l a a n d E y r i n g (21) of the A m O * system, i n ­ c l u d i n g t e n s i m e t r i c a n d x - r a y d i f f r a c t i o n measurements, has b e e n c o m ­ p l e t e d . T h e results agree w i t h A s p r e y ' s measurements w i t h i n t h e e x p e c t e d a c c u r a c y of his w o r k . A r e v e r s i b l e single phase A m 0 . r e g i o n for 0 < χ < 0.2 is o b s e r v e d at 1 1 7 2 ° C . a n d 0 < x < 0.007 at 866° C , w h i c h w e r e t h e l i m i t s of c o m p o s i t i o n a v a i l a b l e to the i s o t h e r m a l t e n s i m e t r i c t e c h ­ n i q u e . A s t r i k i n g feature of the isotherms is the d i s t i n c t c h a n g e i n slope w h i c h occurs at a c o m p o s i t i o n of A m O i . at 8 6 6 ° C . T h e b r e a k occurs at d e c r e a s i n g c o m p o s i t i o n s r e a c h i n g A m O i . at 1 1 7 2 ° C . T h i s feature is r e m i n i s c e n t of a b r e a k i n the c u r v e of l a t t i c e p a r a m e t e r vs. c o m p o s i t i o n 2

i P

9 9

9 7

Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.

6.

EYRING

Oxide

77

Phases

of the t e r n a r y o x i d e C e ^ Y i . ^ O ^ at M O i

9 5

w h i c h was considered b y B e v a n

to be c a u s e d b y a t r a n s i t i o n f r o m r a n d o m to c o m p l e x e d defects.

et al. (12)

T h e c h a n g e is not s h a r p b u t occurs r e v e r s i b l y over a c o n s i d e r a b l e pressure r a n g e i n a l l cases. T h i s b r e a k n a t u r a l l y shows u p i n the d e r i v e d t h e r m o ­ d y n a m i c q u a n t i t i e s , AS a n d AH.

C h i k a l l a also points out t h a t the i m p u r i t y

c o n c e n t r a t i o n w o u l d u n d o u b t e d l y affect the b e h a v i o r i n the r e g i o n

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch006

2.0 > χ >

AmO , x

1.99.

X - r a y d i f f r a c t i o n studies b y C h i k a l l a (21)

on cooled and quenched

samples s h o w t h a t the single phase A m O , 1.8

< χ < 2.0, stable at h i g h

r

t e m p e r a t u r e s , d i s p r o p o r t i o n a t e s too r a p i d l y to b e q u e n c h e d ; a l l the r o o m temperature diagrams show two p h a s e s — A m 0 . o o and A m O i . g .

I n the

2

r a n g e A m O i > , Ο < χ < 0.20, a c o n t i n u o u s l y c h a n g i n g C - t y p e phase is r

+a

o b s e r v e d as s h o w n b y the c o n t i n u a l shift i n the l a t t i c e p a r a m e t e r as a f u n c t i o n of c o m p o s i t i o n .

B o t h c o o l e d a n d q u e n c h e d samples g i v e the

same results; e v e n one q u e n c h e d f r o m 4 6 0 ° C . seems to b e i n the s i n g l e phase r e g i o n . I n terms of the r a r e e a r t h oxides a m i s c i b i l i t y g a p b e t w e e n A m 0 2

A m O i . s exists, w i t h some c o m p l i c a t i o n s i n the A m O i . n to A m O i

region.

8

B r o a d σ a n d a regions exist at h i g h t e m p e r a t u r e a n d m a y be s e p a r a t e d b y a miscibility gap. C u r i u m . A c e n t r a l p r o b l e m i n the c u r i u m - o x y g e n system is the l a c k of p r e c i s e k n o w l e d g e of the c o m p o s i t i o n s for the phases w h i c h h a v e b e e n observed.

G e n e r a l l y , it has b e e n a s s u m e d t h a t there is a n a n a l o g y b e ­

t w e e n this system a n d those d i s c u s s e d above.

The

fluorite-type

phase

w i t h the smallest l a t t i c e p a r a m e t e r is c o n s i d e r e d to b e C m 0 , a n d the 2

most f u l l y r e d u c e d C - t y p e o x i d e is a s s u m e d to h a v e the Cm0

1 5

composition

.

W a l l m a n n ( 4 9 ) has p r e p a r e d C - t y p e C m 0 2

3

(a =

11.01 ±

0.01)

by

igniting c u r i u m nitrate on a p l a t i n u m plate i n air (this yields a black intermediate oxide), followed by reduction w i t h purified hydrogen t e m p e r a t u r e s f r o m 600° to 8 5 0 ° C .

at

T h e C - t y p e s e s q u i o x i d e transforms

s p o n t a n e o u s l y at r o o m t e m p e r a t u r e i n a f e w days to the h e x a g o n a l A - t y p e s e s q u i o x i d e (a — 3.80 ± 0.02A., c — 6.00 ±

0.03A.), presumably a result

of r a d i a t i o n effects. U s i n g a n a u t o m a t i c r e c o r d i n g t h e r m a l b a l a n c e P o s e y et al. (41,

42)

h a v e m a d e i s o b a r i c a n d i s o t h e r m a l studies i n d i c a t i n g the existence regions

of

stability

having

approximate

compositions

C m O i . 8 2 , as w e l l as phases of v a r i a b l e c o m p o s i t i o n C m O i

5 + A

CmOi

7 i

of

and

and C m 0 . .

T h e breaks are not u s u a l l y s h a r p ; hence, the stable phases s h o w

2

x

an

a p p r e c i a b l e range of c o m p o s i t i o n e s p e c i a l l y for the C m O i . g a to C m O i . r e g i o n w h i c h m a y i n v o l v e s e v e r a l different phases.

Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.

7 8

78

LANTHANIDE/ACTINIDE

CHEMISTRY

A c o m p l e t e i s o b a r at 159 m m . of H g shows the n o r m a l breaks at C m O i . 8 a n d C m O u i n the r e d u c t i o n h a l f of the c y c l e b u t e x h i b i t s a n extreme hysteresis l o o p i n the o x i d a t i o n p a r t of the c y c l e w h i c h d i d not close u n t i l a c o m p o s i t i o n near C m 0

was r e a c h e d .

2

T h i s b e h a v i o r , to a

lesser degree, is e x h i b i t e d b y the rare e a r t h o x i d e systems discussed a b o v e . I s o t h e r m a l measurements

seem to c o n f i r m the m o r e expressive

iso­

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch006

b a r i c results a n d even i n d i c a t e a p o s s i b l e c o m p l e x i t y i n the C m O i . s o - i . s a region. Smith

has o b s e r v e d a C m O ,

(47)

lattice parameter

(a

fluorite-type

r

5.38 to 5 . 5 2 A . ) .

=

entire c o m p o s i t i o n r a n g e b e t w e e n C m 0

2

phase of

variable

T h i s p r o b a b l y represents

the

a n d C m O i — t h e d i a g r a m s not 5

b e i n g g o o d e n o u g h to see s u p e r s t r u c t u r e lines c h a r a c t e r i s t i c of a C - t y p e , σ phase or a n y of the other i n t e r m e d i a t e phases. s e r v e d a — 2 ( 5 . 5 0 ) for C - t y p e

( W a l l m a n n (49)

ob­

Cm 0 ). 2

3

P e r h a p s w i t h s u c h intense r a d i o a c t i v i t y c o m p l e t e o r d e r i n g is i m p o s ­ sible, a n d a l t h o u g h the t e n s i m e t r i c measurements

definitely show

the

g r e a t l y i n c r e a s e d s t a b i l i t y at c e r t a i n concentrations the o r d e r is not w e l l e n o u g h e s t a b l i s h e d to s h o w u p i n the x - r a y d i a g r a m s . o b s e r v e d i n the m i x e d C e

0 2

Tb

0 8

0.

r

T h i s b e h a v i o r is

system w h e r e the presence of

Ce

prevents the c o m p l e t e o r d e r i n g necessary to g i v e r e s o l u t i o n i n the h i g h t e m p e r a t u r e x - r a y d i f f r a c t i o n patterns (20),

b u t the t e n s i m e t r i c m e a s u r e ­

ments i n d i c a t e u n m i s t a k a b l y the f o r m a t i o n of the t phase Ternary Actinide-Lanthanide

Oxide

(33).

A n interesting

Phases.

exists b e t w e e n the o r d e r e d o x i d e phases of the l a n t h a n i d e elements

link on

the one h a n d a n d the a c t i n i d e oxides o n the other. B a r t r a m describes the p r e p a r a t i o n a n d structures of U0

3

' 3R 0 2

3

t e r n a r y oxides h a v i n g the

composition

or U R O i , w h e r e R represents a rare e a r t h a t o m 6

2

T h e s e structures are i s o m o r p h o u s w i t h the R O 7

cussed for the b i n a r y C e , P r , a n d T b oxides.

i 2

(10).

phases p r e v i o u s l y d i s ­

I n the t e r n a r y oxides the

u r a n i u m atoms fill a l l the m e t a l positions a l o n g the strings a n d the oxygens are s h i f t e d i n t o w a r d the v a c a n t sites a l o n g the s t r i n g . T h e R atoms are seven c o o r d i n a t e d

i n the sheaths s u r r o u n d i n g the strings as i n d i c a t e d

above.

Observed Trends The

fluorite-related

o x i d e phases w h i c h are k n o w n i n the l a n t h a n i d e

a n d a c t i n i d e series are d i s p l a y e d i n T a b l e I I for closer c o m p a r i s o n .

The

m o s t o b v i o u s feature is that the o x i d e systems of C e , P r , a n d T b r e v e a l greater c o m p l e x i t y t h a n a n y of the a c t i n i d e elements so far s t u d i e d . d i o x i d e s of the a c t i n i d e elements from T h 0 thanides.

2

to C m 0

2

are m o r e easily r e d u c e d as one

The goes

s h o w i n g a n a p p r o a c h to the b e h a v i o r of the l a n ­

M o r e c o m p l e t e measurements

on C m O

x

a n d BkO

x

may well

s h o w m a r k e d s i m i l a r i t y to the rare earths.

Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.

6.

EYRING

Oxide

79

Phases

A l l 12 elements l i s t e d i n T a b l e I I f o r m d i o x i d e s of the same structure. M o s t o f t h e m f o r m sesquioxides h a v i n g t h e Α - ,Β-, or C - t y p e r a r e e a r t h structure a n d demonstrate s i m i l a r p o l y m o r p h i s m . T h e analogous i n t e r ­ m e d i a t e oxides are also o b v i o u s l y possible, a n d the R„0 n-2

homologous

2

series c o u l d exist. T h e q u e s t i o n as to w h e t h e r s u c h phases are i n fact o b s e r v e d depends e n t i r e l y o n the f o r m of t h e free e n e r g y surface. T h e

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch006

factors d e t e r m i n i n g t h e shape a n d r e l a t i v e positions of t h e free m i n i m a of e a c h phase are n o t u n d e r s t o o d . observed

energy

E v e n metastable phases are

to b e f o r m e d u n d e r circumstances w h e r e o r d e r i n g is m u c h

s l o w e r t h a n t r a n s f o r m a t i o n to another d i s o r d e r e d phase (i.e., σ

ηι

—>

a

m

inPrCy. F i g u r e 6 shows t h e l a t t i c e p a r a m e t e r s vs. c o m p o s i t i o n of t h e phases d i s c u s s e d above.

F o r t h e C - t y p e sesquioxides or σ phases t h e p s e u d o \

5.600

1

I

i

I

\

_Ce

_

-

\ ο

° Th "

Ν. Ο

5.500

Pu "Am 1 \ N . • Cm°

° Pa -

-

·\

\

-

°u >v ° Np Ce ' \ / \ Pu " \ Pr > Am " °Cm



5.400 -

-

.Tb

°Bk -

ο

5.300

ο

°Tb 5.200

J-

ι

I

1.5

1.6

1.7

_,J

1.8

I

1.9

i-

2.0

x i η ROv Figure 6. Lattice of some hnthanide

parameters of fuorite-related oxides and actinide elements as a function of composition

Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.

LANTHANIDE /ACTINIDE

80

fluorite

CHEMISTRY

c e l l d i m e n s i o n is u s e d for c o m p a r i s o n . T h e l a t t i c e parameters of

a l l the i n t e r m e d i a t e oxide phases l i e a b o v e a straight l i n e j o i n i n g values f o r the d i o x i d e a n d C - t y p e sesquioxide. Existence Diagram for R 0 - 2 Phases of Some Lanthanide and Actinide Elements

Table II.

n

2 u

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch006

Phase

A

Type η

4

x(ROJ

Β

C

σ

4

4

1.5 < χ

1.50

X X X

Ce Pr Tb U/Y Th Pa U Np Pu Am Cm Bk

<

1.7

e

2

3

+

1.7

9

10

11

12

1.80

1.82

1.83

Χ

Χ χ

X X χ

Χ

Χ χ χ χ

χ

|0

? ?

χ χ χ

?

χ

?

=

? χ

change

χ

00

2.00

Χ Χ ρ

Χ χ χ χ χ χ χ χ χ χ χ χ

?

χ

X X X

2

<

w i t h the c h a n g e i n the heats of a t o m i z a t i o n of the L

respective oxides p e r e q u i v a l e n t 0

2

( F i g u r e 7 ) illustrates w e l l the o b ­

s e r v e d trends i n s t a b i l i t y . A difference of 10 k c a l . p e r e q u i v a l e n t of o x y g e n i n the energies of a t o m i z a t i o n corresponds to o x y g e n d i s s o c i a t i o n pressure differences of a b o u t 100 orders of m a g n i t u d e . T h e o x y g e n d i s s o c i a t i o n pressure of a p a r t i c u l a r oxide c o m p o s i t i o n shows a definite t r e n d w i t h i n e a c h series i n c r e a s i n g w i t h a t o m i c n u m b e r . T h e order, i n the r e g i o n of o v e r l a p of the t w o series, is i n d i c a t e d b y the o x y g e n d i s s o c i a t i o n pressure, at some t e m p e r a t u r e , of R 0

1 7

i

4

w h i c h increases i n the o r d e r P u , C e , A m ,

Pr, T b , and C m . C h e m i s t s , a c c u s t o m e d to the vagaries of the t w o series of elements, r e a l i z e that facts f o r b i d a n y s i m p l e p r o g r e s s i o n i n properties. T h i s is true for the l a n t h a n i d e elements because of the p e r t u r b a t i o n of

properties

a c c o m p a n y i n g the s t a b i l i z i n g effect o n the electrons of a n e m p t y , h a l f filled

a n d f u l l 4/ shell. It is a c c e n t u a t e d i n the case of the actinides w h e r e

one has 6d, 7s, a n d 5/ levels so close together i n e n e r g y that the e a r l y m e m b e r s of the series b e h a v e as t h o u g h they h a d no / electrons.

However,

as one progresses d o w n the a c t i n i d e series the / electrons d e f i n i t e l y be­ c o m e less a v a i l a b l e for b o n d i n g as t h e y do i n the 4f elements. A c k e r m a n n a n d T h o r n ( 4 ) e m p h a s i z e the i m p o r t a n c e , i n i n t e r p r e t i n g h i g h t e m p e r a t u r e v a p o r i z a t i o n results, of k n o w i n g the c o m p o s i t i o n a n d

Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.

6.

EYRING

Oxide

81

Phases

n a t u r e of the s o l i d phase. E v e n T h 0 t i o n at 2 5 0 0 ° C .

(4).

2

lost o x y g e n i n c o n g r u e n t v a p o r i z a ­

A l l other a c t i n i d e d i o x i d e s s t u d i e d h a v e a h i g h e r

o x y g e n d i s s o c i a t i o n pressure t h a n T h 0

2

at the same t e m p e r a t u r e a n d

w o u l d b e e x p e c t e d to f o r m a n a phase.

T h i s was o b s e r v e d to a great

degree i n U 0 . , s t r o n g l y suggested i n N p 0 . , , a n d c l e a r l y d e m o n s t r a t e d 2

x

2

r

in P u 0 _ , A m 0 . , and C m 0 _ . In addition, C m 0 . 2

x

2

x

2

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch006

i n t e r m e d i a t e phases at C m O i , +3

and + 4

x

2

and C m O i .

7 1

8

valences w i t h a 5f

s h o w e d stable

x

T h e fact that C m shows

c o n f i g u r a t i o n for C m

3 +

emphasizes the

greater a v a i l a b i l i t y of the 5f electrons for b o n d i n g t h a n exists i n the r a r e earths w h e r e G d

3 +

w i t h 4f electrons forms o n l y the sesquioxide. 1

Ι

ΐ

ι

ι

Pu

45

-

40

V

Ce

-

35

\

30

Am° 25

°o

\

20

15

-

10

-

\ \

OPr

Tb 1 4

12

ι

I

16

18

Δ (Δ H ) A T O M

ι

20

1

22

IZATION

Figure 7. Free energy change for the reaction R0 (c) = V2R O (c) + V4 0 (g) correlated with the differences in atomization energy per equiv­ alent of oxygen for R0 (c) and R 0 (c). All values are given in kcal. per equivalent 2

2

s

2

2

2

3

Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.

82

LANTHANIDE /ACTINIDE

T h e structural principles enumerated

a b o v e for

the

CHEMISTRY

intermediate

phases of the r a r e earths, i n c l u d i n g the a phase, p r e s u p p o s e a s t r u c t u r e w h i c h w o u l d be better c h a r a c t e r i z e d b y o x y g e n vacancies t h a n b y m e t a l interstitials. I t is t a c i t l y a s s u m e d t h a t the a phases of t h e a c t i n i d e oxides w o u l d be analogous.

However, Atlas and Schlehman (8)

have studied

t h e pressure d e p e n d e n c e of e l e c t r i c a l c o n d u c t i v i t y o n c o m p o s i t i o n

and

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch006

o x y g e n pressure a n d c o n c l u d e f r o m m a s s - a c t i o n analysis that the defects i n P u 0 - ^ i n the t e m p e r a t u r e r e g i o n 1 1 0 0 ° - 1 6 0 0 ° C . are p r e d o m i n a n t l y 2

i n t e r s t i t i a l p l u t o n i u m ions, u s u a l l y P u . 4 +

I n this t r e a t m e n t the a r b i t r a r y

a s s u m p t i o n is m a d e t h a t the defects d o n o t interact. T h e d a t a c o v e r t h e c o m p o s i t i o n r a n g e P u 0 . o - i 8 , w h e r e one w o u l d expect extensive defect 2

i n t e r a c t i o n s . C h i k a l l a ( 2 1 ) has c o n s i d e r e d the v a r i o u s attempts to determ i n e the t y p e of defects i n the o x y g e n deficient fluorite phases, P u 0 _ 2

and A m 0

CeOy-œ,

2

. H e

concludes

that

although

the

Xy

mass-action

t r e a t m e n t agrees i n a l l cases w i t h a m e t a l i n t e r s t i t i a l m o d e l a n o x y g e n v a c a n c y m o d e l m i g h t e x p l a i n the results as w e l l , e s p e c i a l l y i f t h e defects are p a i r e d or c o m p l e x e d . defect concentration

O n the other h a n d there m a y b e no a p p r e c i a b l e

at a l l i n a w e l l a n n e a l e d a phase

with

domain

structure. A s a m a t t e r of p r i n c i p l e a n y of the systems s h o w i n g b o t h the s e s q u i oxide

( e v e n the C - t y p e )

a n d the

miscibility gap somewhere. t h e a phase.

fluorite-type

dioxide must exhibit a

F o r this reason the σ is d i s t i n g u i s h e d f r o m

I n a l l cases w h e r e t h o r o u g h studies h a v e b e e n p o s s i b l e , a

g a p has i n d e e d b e e n f o u n d . S o l i d s o l u b i l i t y i n r a r e e a r t h o x i d e systems has b e e n s t u d i e d e x t e n ­ s i v e l y . T h e r e is n o d o u b t of c o m p l e t e s o l u b i l i t y , often c a l l e d i s o m o r p h o u s r e p l a c e m e n t b e t w e e n o x i d e phases of the same s y m m e t r y as i n m i x t u r e s of P r 0

and C e 0

2

2

or i n the sesquioxides of one t y p e .

V e g a r d ' s l a w appears to h o l d p r e c i s e l y

I n these cases

(40).

B e c a u s e of the close r e l a t i o n s h i p b e t w e e n the C - t y p e a n d the

fluorite-

t y p e structures m u c h a t t e n t i o n has b e e n g i v e n to the r a n g e of s o l u t i o n between

phases

h a v i n g these structures.

i n d i c a t e d that i n solutions i n v o l v i n g C e 0

Brauer and Gradinger 2

or T h 0

r a r e earths, p h a s e s e p a r a t i o n is m o s t c o m m o n ,

2

(17)

w i t h the t r i v a l e n t

b u t there w e r e

w h i c h a p p e a r e d to f o r m c o m p l e t e s o l i d s o l u t i o n (i.e., C e 0

2

cases

with S m 0 , 2

3

G d 0 , or D y 0 ) over the entire r a n g e of c o m p o s i t i o n . 2

3

2

3

T h i s is apropos

of the b a s i c q u e s t i o n of w h e t h e r or not one m a y go

continuously between

different structures h a v i n g different

I n p r i n c i p l e this s h o u l d n o t b e p o s s i b l e (19, 34);

symmetries.

h o w e v e r , c e r t a i n cases

h a v e b e e n r e p o r t e d , a n d the one m e n t i o n e d a b o v e is u s e d b y Z e r n i k e (51)

against the b a s i c p h i l o s o p h i c a r g u m e n t s . B e v a n (12)

a n d his colleagues h a v e s t u d i e d p r e c i s e l y those systems

r e p o r t e d to b e s i n g l e phase b y B r a u e r a n d G r a d i n g e r a n d h a v e

Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.

shown

6.

EYRING

Oxide

83

Phases

t h e m to b e at least t w o phase. A m i s c i b i l i t y gap at about 6 0 %

sesquioxide

is o b s e r v e d i n e a c h case. T h i s removes one of the p r i n c i p l e a r r o w s f r o m the b o w of those w h o w o u l d argue against the r e q u i r e m e n t s of

basic

t h e o r y a n d raises the q u e s t i o n as to w h e t h e r , i n fact, there are

any

exceptions. T h i s is a q u e s t i o n w h i c h c a n o n l y b e settled b y p r i n c i p l e since more a n d more careful structural determinations m a y be made a n d c o u l d

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch006

r e v e a l n a r r o w t w o - p h a s e regions. C h i k a l l a (21)

has c o n s i d e r e d the p o s s i b i l i t y t h a t r a d i a t i o n d a m a g e

is a m a j o r cause of f a i l u r e to o r d e r a m o n g the i n t e r m e d i a t e a c t i n i d e oxides. T h i s w i l l c e r t a i n l y b e a factor against o r d e r i n g , b u t the d e c i d e d l y greater t e n d e n c y of the short l i v e d C m O to s h o w o r d e r i n g indicates t h a t x

it is o n l y one of m a n y factors. X - r a y d i f f r a c t i o n patterns m a y f a i l to r e v e a l the presence of o r d e r e d i n t e r m e d i a t e phases i n C m O b e c a u s e of the h i g h x

radiation.

H o w e v e r , t e n s i m e t r i c measurements m a y r e v e a l order

x - r a y measurements f a i l , as w a s true for the C e T b i . O y

H i g h t e m p e r a t u r e x - r a y d i f f r a c t i o n measurements

y

x

system

where (33).

u s i n g h i g h intensity

tubes m i g h t be r e q u i r e d to see the true s t r u c t u r a l changes at t e m p e r a t u r e a n d at e q u i l i b r i u m for h i g h l y r a d i o a c t i v e m a t e r i a l s .

Acknowledgment T h i s p a p e r is d e d i c a t e d to James C . W a l l m a n n , a c t i n i d e e x p e r i m e n talist e x t r a o r d i n a r y w h o s e u n t i m e l y d e a t h r e m o v e d a d e v o t e d

scientist

f r o m his l a b o r a t o r y i n the p e a k of his p r o d u c t i v i t y . T h e loss to science is great a n d to his f a m i l y a n d friends is w i t h o u t relief. T h i s w o r k was p e r f o r m e d u n d e r the auspices of the A t o m i c E n e r g y C o m m i s s i o n w h o s e resources

a n d far s i g h t e d p o l i c i e s h a v e m a d e this

p a p e r a n d most of the w o r k d i s c u s s e d h e r e i n possible.

R. T . Sanderson

a n d J . O . S a w y e r h a v e h e l p f u l l y discussed c e r t a i n aspects of this w o r k .

Literature Cited

(1) Ackermann, R. J., Faircloth, R. L., Rauh, E. G., Thorn, R. J., Inorg. Nucl. Chem. 28, 111 (1966). (2) Ackermann, R. J., Gilles, P. W., Thorn, R. J., J. Chem. Phys. 25, 1089 (1956). (3) Ackermann, R. J., Rauh, E. G., Thorn, R. J., Cannon, M.C.,J.Phys. Chem. 67, 762 (1963). (4) Ackermann, R. J., Thorn, R. J., Proc. Symp. Thermodynamics, IAEA Vienna 1965,I,243 (1965). (5) Anderson, J. S., ADVAN. CHEM. SER. 39, 1 (1963). (6) Anderson, J. S., Proc. Chem. Soc. p. 166 (1964). (7) Asprey, L. B., Cunningham, B. B., U. S. At. Energy Comm. Rept. UCRL329 (1949). (8) Atlas, L. M., Schlehman, G. J., Proc. Intern. Conf. on Plutonium, 3rd, London (1965). Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch006

84

LANTHANIDE/ACTINIDE CHEMISTRY

(9) Baengiger, N. C., Eick, H. Α., Schuldt, H. S., Eyring, L., J. Am. Chem. Soc. 83, 2219 (1961). (10) Bartram, S. F., Inorg. Chem. 5, 749 (1966). (11) Bertaut, E. F., Acta Cryst. 6, 557 (1953). (12) Bevan, D. J. M., Barker, W. W., Martin, R. L., Parks, T. C., "Rare Earth Research III," L. Eyring,ed.,p. 441, Gordon & Breach, New York, 1965. (13) Bevan, D. J. M., Kordis, J.,J.Inorg. Chem. Nucl. Chem. 26, 1509 (1964). (14) Boganov, A. G., Rudenko, V. S., Dokl. Akad. Nauk SSSR 161, 590 (1965). (15) Brauer, G., "Progress in the Science and Technology of the Rare Earths," Vol. II, L. Eyring, ed., p. 312, Pergamon Press, Oxford, 1966. (16) Ibid., I, p. 152 (1964). (17) Brauer, G., Gradinger, H., Z. Anorg. Allgem. Chem. 276, 209 (1954). (18) Brett, N. H., Russell, L. E., Proc. Intern. Conf. Pu Metallurgy, 2nd, Grenoble (1960). (19) Bridgman, P. W., Rev. Mod. Phys. 7, 17 (1935). (20) Burnham, Α., Eyring, L. (to be published). (21) Chikalla, T. D.,J.Inorg. Nucl. Chem. (in press). (22) Chikalla, T. D., McNeilly, C. E., Skavdahl, R. E., J. Nucl. Meter. 122, 131 (1964). (23) Eyring, L., Baenziger, N. C., J. Appl. Phys. (Suppl.) 33, 428 (1962). (24) Foëx, M., Z. Anorg. Allgem. Chem. 337, No. 5-6 (1965). (25) Foëx, M., Traverse, J. P., Coutures, J., C. R. Acad. Sc. Paris 261, 5497 (1965). (26) Gardner, E. R., Markin, T. L., Street, R. S., J. Inorg. Nucl. Chem. 27, 541 (1965). (27) Glushkova, V. B., Boganov, A. G., Izv. Akad. Nauk. SSSR, Ser. Khim. 7, 1131 (1965). (28) Hoch, M., Yoon, H. S., "Rare Earth Research III," L. Eyring,ed.,p. 665, Gordon & Breach, New York, 1965. (29) Hoekstra, H. R., Inorg. Chem. 5, 754 (1966). (30) Hyde, B. G., Bevan, D. J. M., Eyring, L., Phil. Trans. Roy. Soc. London A No. 1106 259, 583 (1966). (31) Hyde, B. G., Bevan, D. J. M., Eyring, L., Intern. Conf. Electron Diffraction Crystal Defects, Melbourne, Australia, 1965, Pergamon Press, 196 (32) Hyde, B. G., Eyring, L., "Rare Earth Research III," L. Eyring,ed.,p. 623, Gordon & Breach, New York, 1966. (33) Kordis, J., Eyring, L. (to be published). (34) Landau, L. D., Lifshitz, E. M., "Statistical Physics," p. 260, Pergamon Press, London, 1959. (35) Lynds, L., Young, W. A., Mohl, J. S., Libowitz, G. G., ADVAN. CHEM. SER. 39 (1963). (36) Magnéli,A.,Acta Chem. Scand. 2, 501 (1948). (37) Ibid., p. 861. (38) Markin, T. L., Bones, R. J., Gardner, E. R., Rept. AERE-R4724, 1964. (39) Martin, A. E., Edwards, R. K., J. Phys. Chem. 69, 1788 (1965). (40) McCullough, J. D., Britton, J. D., J. Am. Chem. Soc. 74, 5225 (1952). (41) Posey, J. C., Kuehn, P. R., McHenry, R. E., Abstr. Papers, 150th Meeting ACS, Atlantic City, 1965. (42) Posey, J.C.,Kuehn, P. R., McHenry, R. E. (private communication). (43) Roberts, L. E. J., ADVAN. CHEM. SER. 39, 66 (1963). (44) Roberts, L. E. J., Walter, A. J., Rept. AERE-R 3624 (1963). (45) Roberts, L. E. J., Quart. Rev., London, 15, No. 4, 442 (1961). (46) Sawyer, J. O., Hyde, B. G., Eyring, L., Bull. Soc. Chim. p. 1190 (1965). (47) Smith, K. (private communication). (48) Wadsley, A. D., "Non-Stoichiometric Compounds," L. Mandelcorn, ed., Chapt. 3, Academic Press, London, 1964. Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.

6.

EYRING

Oxide Phases

85

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch006

(49) Wallmann, J. C.,J.Inorg. Nucl. Chem. 26, 2053 (1964). (50) Willis, Β. T. M., I. A. E. A. Symp., Vienna, 1964. (51) Zernike, J., "Chemical Phase Theory," p. 169, Ν. V. Uitgevers-Maat­ schappij AE. E. Kluwer Antwerp. RECEIVED October 17, 1966.

Fields and Moeller; Lanthanide/Actinide Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1967.