Radiation Chemistrypubs.acs.org/doi/pdf/10.1021/ba-1968-0081.ch021MBH, 2 +. (in 0.1N H 2 S 0 4 ) and M B H , 3 +. (in co...
0 downloads
187 Views
1MB Size
21 The Application of Pulse Radiolysis to the
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 21, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch021
Radiation Chemistry of Organic Dyes LEONARD
I. G R O S S W E I N E R
Physics Department, Illinois Institute of Technology and Department of Radiation Therapy, M i c h a e l Reese Hospital and M e d i c a l Center, Chicago, Ill.
Pulse radiolysis studies have shown that many organic dyes are highly reactive toward the products of water radiolysis. -
Dyes with quinonoid structures are reduced by e aq to the semiquinone in encounter-limited reactions. Hydroxyl radi cals react by oxidation and addition processes. In general, reductive bleaching takes place via semiquinone dismutation, while oxidative decoloration is a complex process involving several O H radicals. The complexing of dyes to high molecular weight substrates leads to a marked change of
e-aq
reactivity.
Some oxidized dye intermediates and
triplet states react with e-aq in chemiluminescent processes.
>Tphe r a d i a t i o n c h e m i s t r y of o r g a n i c dyes has b e e n s t u d i e d f o r almost A
40 years.
I n early w o r k t h e emphasis w a s o n t h e c o l o r changes i n
d u c e d b y i r r a d i a t i o n , m o t i v a t e d i n p a r t b y the p o s s i b i l i t y that d y e s o l u tions m i g h t serve as c o n v e n i e n t dosimeters
( 2 5 ) . A l t h o u g h dyes are
g e n e r a l l y m o r e c o m p l e x t h a n the other o r g a n i c m o l e c u l e s w h o s e r a d i a t i o n c h e m i s t r y h a s b e e n s t u d i e d i n d e t a i l , specific reasons c a n b e c i t e d f o r interest i n this subject.
F r o m t h e v i e w p o i n t of r a d i a t i o n b i o l o g y , dyes
c a n a c t as w e l l - d e f i n e d m o d e l s o f b i o l o g i c a l r e d o x systems.
T h i s aspect
is p a r t i c u l a r l y p e r t i n e n t i n c o n n e c t i o n w i t h recent w o r k o n the r a d i o l y s i s of dyes c o m p l e x e d t o h i g h m o l e c u l a r w e i g h t substrates.
I n addition, the
strong v i s i b l e c o l o r a t i o n of d y e d e r i v a t i v e s facilitates t h e i d e n t i f i c a t i o n of the transient a n d p e r m a n e n t r e a c t i o n p r o d u c t s , w h i c h offsets t o some extent t h e m u l t i p l i c i t y of possible reactions.
S o m e of t h e intermediates
f o r m e d i n r a d i o l y s i s are p h o t o c h e m i c a l p r o d u c t s also, w h i c h has assisted c o n s i d e r a b l y i n e l u c i d a t i n g r e a c t i o n m e c h a n i s m s i n b o t h cases.
Despite
the p o t e n t i a l a p p l i c a t i o n s of p u l s e r a d i o l y s i s t o this subject, t h e a c t u a l a m o u n t of w o r k r e p o r t e d since 1962 has n o t b e e n large.
T h e current
309 Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
310
RADIATION CHEMISTRY
1
status of the field appears to p a r a l l e l d y e p h o t o c h e m i s t r y at a p p r o x i m a t e l y a d e c a d e ago, w h e n flash p h o t o l y t i c methods w e r e i n t r o d u c e d to c o m p l e m e n t the u s u a l p r o c e d u r e s of c o n t i n u o u s i r r a d i a t i o n a n d product characterization.
permanent
T h u s , the emphasis i n the pulse r a d i o l y s i s ap
p r o a c h has b e e n o n i d e n t i f y i n g the transient species f o r m e d w h e n the d y e reacts w i t h the p r o d u c t s of w a t e r r a d i o l y s i s a n d m e a s u r i n g t h e i r f o r m a t i o n a n d d e c a y rate constants.
T y p i c a l l y , these intermediates
can
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 21, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch021
result f r o m b o t h o x i d a t i o n a n d r e d u c t i o n processes, a n d they m a y exist i n m o r e t h a n one i o n i c state w i t h different spectra a n d reactivities. t i v e l y c o m p l e t e investigations h a v e b e e n a t t e m p t e d o n l y for tives of the thiazines a n d xanthenes.
Rela
representa
I n a d d i t i o n to o p t i c a l a b s o r p t i o n
spectra, n e w i n f o r m a t i o n o n c h e m i l u m i n e s c e n t reactions of dyes has b e e n o b t a i n e d b y electron p u l s e - i n d u c e d emission measurements.
This paper
comprises a s u m m a r y of recent w o r k , i n c l u d i n g a b r i e f d i s c u s s i o n of p e r t i n e n t steady i r r a d i a t i o n G values. Research Results Pulse Radiolysis of Aqueous Methylene Blue. T h e first p u l s e r a d i o l y sis s t u d y of a n o r g a n i c d y e w a s c a r r i e d out o n the t h i a z i n e d y e , m e t h y l e n e b l u e (3,
C o n s i d e r a b l e emphasis was g i v e n to the different i o n i c
12).
states of the d y e , r e f e r r e d to as M B H
2
(pK
3 +
a
=
-5.1), M B H
(pK.
2 +
=
0.0), a n d M B . T h e transient spectra o b t a i n e d b y i r r a d i a t i n g n e u t r a l a n d +
a l k a l i n e solutions w i t h 2-fxsec. pulses of 4 M e v . electrons i n the presence of f o r m a t e s h o w e d that the d y e is b l e a c h e d via a two-step process, w i t h a c o n c u r r e n t a b s o r p t i o n increase p e a k i n g at 420 m/x. T h e
intermediate,
d e s i g n a t e d as M B - corresponds w i t h the m e t h y l e n e b l u e
semiquinone
first i d e n t i f i e d b y flash p h o t o l y s i s i n the presence of r e d u c i n g agents T h e faster step w a s a t t r i b u t e d to the r e d u c t i o n of M B
15, 17).
b y c o m p a r i n g its rate w i t h the d e c a y of e\
q
+
(11,
by
e'
m
at 720 m/x, a n d the slower
step was a t t r i b u t e d to r e d u c t i o n b y C 0 ~ r e s u l t i n g f r o m the s c a v e n g i n g 2
of O H b y formate.
T h e s e m i q u i n o n e disappears b y a second-order p r o c
ess a c c o m p a n i e d b y a p a r t i a l r e t u r n of the d y e , w h i c h was e x p l a i n e d b y d i s p r o p o r t i o n a t i o n l e a d i n g to e q u a l parts of M B MBH.
The
methylene
K e e n e et at
(12)
blue semiquinone
2 +
( i n 0.1N
p r o t o n a t i o n states assigned
differ f r o m the results of M a t s u m o t o ( 1 5 ) ,
p o s e d the f o l l o w i n g f o u r states: M B MBH,
a n d the l e u c o base,
+
T h e rate constants are s u m m a r i z e d i n T a b l e I.
H S0 ) 2
4
and M B H ,
3 +
• (pH >
9), M B H
( i n cone. H S 0 ) . 2
4
+
by
who pro (pH
3-8),
R e c e n t meas
urements b y J. F a u r e , R. B o n n e a u , a n d J. J o u s s o t - D u b i e n [/. Chim.
Phys.
6 5, 369 (1968) ] o n the effect of the i o n i c strength o n the d i s m u t a t i o n rate constant
s u p p o r t the c o n c l u s i o n of M a t s u m o t o that the n e u t r a l s e m i
q u i n o n e M B - is stable o n l y above p H 9.
Keene, L a n d , and Swallow
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
21.
GROSSWEINER
[J.
Chim.
Organic 65, 371
Phys.
311
Dyes
( 1 9 6 8 ) ] n o w agree w i t h the assignments
gested b y M a t s u m o t a a n d F a u r e et al.
a n d i n d i c a t e that the
sug
reaction
m e c h a n i s m s g i v e n i n Ref. 12 ( w h i c h are s u m m a r i z e d i n T a b l e I )
must
be m o d i f i e d a c c o r d i n g l y . Table I.
Pulse Radiolysis Rate Constants for Methylene Blue
Reaction ' 0
+ MB
e~ Downloaded by NANYANG TECHNOLOGICAL UNIV on June 21, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch021
m
pH
6
MB-
+
7.8
C0 " + MB -» MB• + C 0 +
2
COOH- + M B -» MBH +
COOH- + M B H COOH- + M B H H
+ C0
9
3 +
-» MBH
2
2
+ H
+
0
— -0.8
9
—2 X 1 0 -TO
d
+
2 +
—7 X 10
2 MB- + H 0 -» M B H + MB + OH"
7.8
3.0 X 10
2 MBH -» MBH + MBH Data from Keene, Land, and Swallow (12). Ionic states of methylene blue M B , M B H , M B H M B - , M B H , M B H ; leuco base: M B H . M B H , M B H ; leuco base: M B H . Units of liters/mole-sec. *H .
0.8"
2 +
2
+
9
9
— -5.7*
+
(10%)
10
5.6 X 1 0 ' ( 1 0 % )
1.8
2
+ C0
+
Constant
2.5 X 1 0
7.8
2
+ C0
+
-> M B H
2 +
Rate
2 +
8
(10%)
9
—1.6 X 10
9
a
b
+
+
+
2
2
2 +
2
3 +
, ionic states of the semiquinone:
2 +
2 +
c
0
T h e p u l s e r a d i o l y s i s of M B w i t h o u t f o r m a t e l e d to t h e M B • absorp +
t i o n p l u s another transient p e a k i n g at 520 m^t.
T h e latter
corresponds
w i t h the s p e c t r u m of s e m i o x i d i z e d d y e o b t a i n e d b y flash p h o t o l y s i s 15)
(II,
a n d w a s a t t r i b u t e d to the attack of O H . H o w e v e r , t h e a d d i t i o n of
O H to the d y e w a s not r u l e d out.
N o e v i d e n c e w a s f o u n d for t r i p l e t
f o r m a t i o n . T h e spectral changes o b t a i n e d i n m o r e a c i d i c solutions w i t h formate
s h o w that
d e s i g n a t e d as M B H
the 2
2 +
semiquinone
(pK
ffl
—
-3)
occurs
i n two protonated
and M B H
(pK
+
ffi
— 2).
states
It w a s sug
gested that the first p r o t o n is a t t a c h e d to the c e n t r a l r i n g n i t r o g e n a t o m a n d the second p r o t o n adds to the — N ( C H ) 3
group. T h e approximate
2
f o r m a t i o n a n d d e c a y rate constants are g i v e n i n T a b l e I. Pulse Radiolysis of Aqueous Fluorescein Dyes. T h e xanthene of the
fluorescein
electrons fluorescein
(4,
dyes
t y p e w e r e i n v e s t i g a t e d u s i n g 1-jusec. pulses of 30 M e v .
5, 8).
The
transient
spectra
obtained
with
deaerated
solutions s h o w three characteristic sets of b a n d s . A p r o m i n e n t
p e a k that shifts f r o m 355 m/* i n n e u t r a l solutions to 395 m/x i n a l k a l i n e solutions corresponds w i t h the s e m i q u i n o n e m o n o a n i o n (13).
T h i s b a n d is q u e n c h e d b y e~
m
(pK
a
=
9-5)
scavengers, s u c h as o x y g e n or H 0 , 2
a n d w a s a t t r i b u t e d to r e d u c t i o n of the d y e b y e\ . q
2
A b a n d at 4 1 5 - 4 2 0 m/x
w h i c h does not c h a n g e w i t h p H w a s i d e n t i f i e d w i t h the s e m i o x i d i z e d r a d i c a l m o n o a n i o n , a p h e n o x y l d e r i v a t i v e first o b s e r v e d i n flash p h o t o l y s i s also ( 1 3 ) .
T h i s b a n d is q u e n c h e d b y f o r m a t e a n d w a s a t t r i b u t e d to the
o x i d a t i v e attack of O H . T h e r e m a i n i n g transient consists of a diffuse
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
312
RADIATION CHEMISTRY
a b s o r p t i o n to l o n g w a v e l e n g t h s of the
fluorescein
1
d i a n i o n b a n d (491 m/x)
a n d was d e s i g n a t e d as the " r e d p r o d u c t . " It was d i s t i n g u i s h e d f r o m the other t w o species b y its c o n s i d e r a b l y l o n g e r l i f e t i m e a n d
first-order
decay.
T h e " r e d p r o d u c t " has at least t w o constituents w i t h different b u i l d u p a n d d e c a y rates. It is q u e n c h e d e n t i r e l y b y H a n d O H scavengers
such
as f o r m a t e or e t h y l a l c o h o l , w h i l e o n l y one c o m p o n e n t w a s o b s e r v e d i n air-saturated solutions. T h e l o n g e r - l i v e d constituent w a s i d e n t i f i e d w i t h Downloaded by NANYANG TECHNOLOGICAL UNIV on June 21, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch021
O H a d d u c t s of the xanthene r i n g system, a n d the secondary w e r e assumed to be H - a t o m adducts. quinone ( R )
and semioxidized dye ( X )
10.7 are G ( R ) =
3.3 ±
components
T h e i n i t i a l y i e l d s of the
0.3 a n d G ( X ) =
i n deaerated 1.4 ±
0.2
semi
solutions at p H
(5).
T h e results o b t a i n e d w i t h the eosin d i a n i o n are s i m i l a r to
fluorescein.
I n this case, the R absorptions at 369 m/x ( m o n o a n i o n ) a n d 405 m/x ( d i a n i o n ) agree exactly w i t h the flash photolysis assignments
10,
16),
w h i l e the X m o n o a n i o n b a n d at 450 m/x is reasonably close to the
flash
photolysis spectra r e p o r t e d at 462
(10)
(7,
a n d 456 m/x (16).
The
eosin
O H a d d u c t m a x i m u m is l o c a t e d near 600 m/x c o m p a r e d w i t h 570 ± 20 m/x for
fluorescein
and G ( X ) =
T h e i n i t i a l y i e l d s at p H 9.0 are G ( R ) =
(4,5). 2.0 ±
0.3 (22).
3.3 =t 0.3
T h e smaller c o n t r i b u t i o n of the O H a d d i
t i o n p a t h i n eosin c o m p a r e d w i t h
fluorescein
is consistent w i t h the o c c u
p a t i o n of f o u r of the six xanthene r i n g sites b y b r o m i n e atoms. T h e o n l y i n f o r m a t i o n a v a i l a b l e o n e r y t h r o s i n f r o m p u l s e r a d i o l y s i s locates the d i a n i o n at 450 m/x a n d the X m o n o a n i o n at 470 m/x T h e rate constants f o r d y e r e d u c t i o n b y e~
m
e~
m
as c a l c u l a t e d f r o m the
pseudo-first-order l i f e t i m e i n the presence of formate
(to
suppress
the o v e r l a p p i n g " r e d p r o d u c t " a b s o r p t i o n ) are g i v e n i n T a b l e II. b o t h f o r m a t e a n d a n e~
scavenger s u c h as N 0 or H 0 2
m
R
(6).
2
2
When
are present, the
o n l y significant r e a c t i o n is the r e d u c t i o n of the d y e b y C 0 ~ . T h e rate 2
constants d e t e r m i n e d b y a n a l o g c o m p u t e r fit to the g r o w t h rate of are g i v e n i n T a b l e II.
R
A l t h o u g h the b r o a d " r e d p r o d u c t " a b s o r p t i o n
l i m i t s the use of c o m p e t i t i o n m e t h o d s f o r d e t e r m i n i n g the O H r e a c t i o n rates, estimates w e r e m a d e b y a n a l o g c o m p u t e r s o l u t i o n to the kinetics of the
[dye/e" /OH] a q
system b a s e d o n the d e p e n d e n c e of G ( R )
G ( X ) on initial dye concentration
(Table
and
II).
It w a s s h o w n that R a n d X react together d u r i n g the early stages of t h e i r d e c a y i n deaerated bleaching yields under
6 0
solutions, w h i c h accounts f o r the l o w d y e
C o i r r a d i a t i o n unless a n e'
m
or O H
scavenger
is a d d e d . T h e d e c a y of R i n the absence of X is second o r d e r ; h o w e v e r , the rate constant decreases m a r k e d l y w i t h i n c r e a s i n g d y e c o n c e n t r a t i o n . T h e p r o p o s e d e x p l a n a t i o n is that the s e m i q u i n o n e forms a c o m p l e x w i t h u n r e a c t e d d y e , so that the a c t u a l d e c a y rate is c o n t r o l l e d b y the e q u i l i b r i u m c o n c e n t r a t i o n of free s e m i q u i n o n e . T h e analysis l e d to the s e m i q u i n o n e d i s p r o p o r t i o n a t i o n rate constant
a n d a l i m i t i n g v a l u e of
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
the
21.
GROSSWEINER
Organic
e q u i l i b r i u m constant.
313
Dyes
T h e " r e d p r o d u c t " d e c a y is first order a n d p a r a l l e l s
the r e t u r n of c o l o r a t i o n i n the r e g i o n of the d y e a b s o r p t i o n . T h e m e c h a n i s m p r o p o s e d is s l o w w a t e r ( o r O H " ) e l i m i n a t i o n f r o m the O H a d d u c t l e a d i n g to the f o r m a t i o n of X a n d e v e n t u a l l y a c o l o r e d p e r m a n e n t p r o d u c t (Table
II).
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 21, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch021
Table II.
Pulse Radiolysis Rate Constants for Fluorescein and Eosin Fluorescein
Reaction
a
e~
m
+ S + H -> R +
Rate Constant*
pH
Ref.
1.4 X 10!° ( 1 5 % ) 2.0 X 1 0 ( 1 0 % )
10.7 13
5 20
2.6 X 10
7
(35%)
10.4
2.0 X 10
7
(20%)
10.4
10
CO," + S + H R + C0 2 R + H 0 -> L + S + OHOH- + S - » X + OHO H - 4- S ^ S O H R + X —> 2 S SOH- - > X + O H R + S ^ RS
Eosin Rate Constant
pH
11
Ref.
2.2 X 1 0
10
(20%)
9.0
c
5
4.2 X 10
8
(20%)
8.8
4
5
1.6 X 10
7
(20%)
9.0
c
10.7
5
.7
5
10.7 10.7
5 5 5
1.7 X 10 ( 2 0 % ) 0.6 X 10 ( 3 0 % ) 6.5 X 10 ( 2 0 % ) 70 sec." (10%) K < 5 X 10 M "
+
2
2
1.6 X 10 ( 2 0 % ) 1.4 X 10» ( 4.7 X 10 ( 2 0 % ) 100 sec." ( 2 0 % ) K < 4 X 10 M " 9
1 5 % )
8
1
6
1
1 0
10.4
9
9
8
1
5
1
9.0 9.0 8.5 9.0 9.0
c c
4 c c
Dye dianion (S); semiquinone dianion ( R ) ; semioxidized dye monoanion ( X ) ; O H adduct (SOH •); leuco base ( L ) ; complex (RS). In units of liters/mole-sec. unless indicated otherwise. Unpublished data.
a
b c
Table III.
Pulse Radiolysis Rate Constants for Other Dyes
Reaction Dye + e~ m
Dye + O H Dye + C 0 " Dye + D-glucose 2
a
ox
Dye Acriflavine Rhodamine B Acridine orange M e t h y l green Rhodamine B Rhodamine B Methylene blue
Rate 3.3 X ^3 X 3.2 X 4.3 X ^9 X 1.8 X 2 X
Ref. 20 20 2 2 20 20 2
Constant" 10 (10%) 10 10 10 10 10 (25%) 10 10
10
10
10
9
8
9
Units of liters/mole-sec. Pulse Radiolysis of Other Dyes in Aqueous Solution. I n c o n n e c t i o n
w i t h a n i n v e s t i g a t i o n of e l e c t r o n p u l s e - i n d u c e d l u m i n e s c e n c e b e l o w ) , P r i i t z a n d L a n d (20)
(discussed
r e p o r t e d rate constants for the
of r h o d a m i n e B a n d a c r i f l a v i n e ( T a b l e I I I ) .
reactions
The rhodamine B reduction
p r o d u c t ( i n the presence of f o r m a t e ) absorbs most strongly at 410 m/x, w h i c h corresponds w i t h the s e m i q u i n o n e transient o b t a i n e d b y the p h o t o l y s i s of the d y e i n aqueous f o r m e d w i t h N 0 present 2
a l c o h o l solutions
absorbs b e t w e e n
350
(24).
a n d 500
The
species
m/x. It
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
flash was
314
RADIATION CHEMISTRY
1
o b s e r v e d that b o t h the s e m i q u i n o n e a n d the o x i d a t i o n p r o d u c t are l o n g l i v e d i n deaerated
solutions, w h i c h suggests that the latter i n c l u d e s a
s u b s t a n t i a l c o n t r i b u t i o n f r o m the O H a d d u c t . a n i o n complexes b y B a l a z s et at.
w e r e r e p o r t e d f o r the r e a c t i o n of e~
m
m e t h y l green ( M G
)
2 +
(Table III).
I n a s t u d y of d y e - p o l y -
( d i s c u s s e d b e l o w ) rate constants
(2)
w i t h a c r i d i n e orange For A O
+
(AO )
and
+
the d i s a p p e a r a n c e
of the
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 21, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch021
d y e is a c c o m p a n i e d b y the g r o w t h of a transient a b s o r p t i o n at a p p r o x i m a t e l y 390 m/ji, w h i c h was a t t r i b u t e d to the one-electron a d d i t i o n p r o d u c t . Pulse Radiolysis of Dye—Polymer Complexes. P u l s e r a d i o l y s i s studies of d y e - p o l y a n i o n complexes h a v e y i e l d e d i n f o r m a t i o n o n the r e a c t i o n of r e d u c i b l e dyes w i t h e~
w h e n the d y e is b o u n d to a h i g h m o l e c u l a r w e i g h t
m
substrate (2).
T h e i n v e s t i g a t i o n of the m e t h y l e n e b l u e - h e p a r i n c o m p l e x
w a s b a s e d o n the c o r r e l a t i o n of b i n d i n g w i t h the rate constant for d y e r e d u c t i o n b y e~ , m
i n the presence of D-glucose as O H - a n d H - a t o m scav
enger. T h e o c c u r r e n c e of b i n d i n g w a s d e d u c e d f r o m t h e " m e t a c h r o m a t i c " s p e c t r a l shift, i n w h i c h the M B a b s o r p t i o n at 665 m/x is s t r o n g l y q u e n c h e d +
i n the c o m p l e x w i t h the a p p e a r a n c e s u c h c o n d i t i o n s the rate constant
of a n e w b a n d at 580 m/x. U n d e r for the r e a c t i o n
of e~
with
m
MB
d i m i n i s h e s f r o m the v a l u e i n free s o l u t i o n ( T a b l e I ) to as l o w as 1.1 10 M 9
_ 1
sec." . T h e d e c a y of the e~ 1
+
X
a b s o r p t i o n w a s a c c o m p a n i e d b y the
m
b l e a c h i n g of the c o m p l e x at the " m e t a c h r o m a t i c
wavelength" and
the
g r o w t h of a transient species at 420 m/x. T h e latter w a s a t t r i b u t e d to the s e m i q u i n o n e M B - , w h i c h w a s stable f o r a c o n s i d e r a b l y l o n g e r p e r i o d c o m p a r e d w i t h the case of free d y e .
( A slower g r o w t h of M B - f r o m the
r e a c t i o n of the d y e w i t h o x i d i z e d glucose was o b s e r v e d a l s o ) . T h e d i r e c t r e l a t i o n s h i p b e t w e e n c o m p l e x i n g a n d the l o w e r e~
m
b y a l t e r i n g c o n d i t i o n s to reverse i n w h i c h case the e~
m
reactivity was shown
the m e t a c h r o m a t i c
wavelength
shift,
rate constant increases t o w a r d s the free s o l u t i o n
v a l u e . F o r e x a m p l e , a d d i n g N a C l o r r a i s i n g the t e m p e r a t u r e leads to a n almost c o m p l e t e restoration of t h e h i g h r e a c t i v i t y . A l o w e r e~
m
w a s o b s e r v e d also w h e n M B
+
reactivity
is c o m p l e x e d to other p o l y m e r i c substrates
( s o d i u m h y a l u r o n a t e , s o d i u m p o l y e t h y l e n e sulfonate, s o d i u m p o l y s t y r e n e sulfonate,
s o d i u m c a r b o x y m e t h y l cellulose,
metachromatic
and D N A ) and with
d y e , a c r i d i n e orange c o m p l e x e d to p o l y anions.
m o r e , the l o w e r i n g of e~
m
r e a c t i v i t y w a s f o u n d f o r the
d y e , m e t h y l g r e e n a n d several other cations
the
Further
non-metachromatic
(cetyl pyridinium chloride,
p r o t a m i n e sulfate, a n d p o l y l y s i n e h y d r o b r o m i d e )
when complexed
to
h e p a r i n or D N A . T h e last t w o cases are p a r t i c u l a r l y interesting because t h e y represent
p o l y c a t i o n s b o u n d to p o l y a n i o n s , i n w h i c h the
strong
interactions c a n b e d e m o n s t r a t e d b y p u l s e r a d i o l y s i s i n the absence of complicating
precipitation
effects
which
occur
with
turbidimetric
methods.
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
21.
GROSSWEINER
Organic
315
Dyes
Luminescence of Dyes Induced by Electron Pulse Irradiation. P r i i t z , S o m m e r m e y e r , a n d L a n d (19)
m a d e the r e m a r k a b l e d i s c o v e r y that the
e l e c t r o n p u l s e i r r a d i a t i o n of r h o d a m i n e B ,
fluorescein,
or a c r i f l a v i n e i n
d i l u t e aqueous s o l u t i o n leads to v i s i b l e l i g h t e m i s s i o n that b u i l d s u p a n d decays over tens of m i c r o s e c o n d s .
T h e intensity is — 1 0
3
times h i g h e r
t h a n the e m i s s i o n i n d u c e d b y d i r e c t electron excitation a n d w a s a t t r i b u t e d to a c h e m i l u m i n e s c e n t process i n v o l v i n g the w a t e r d e c o m p o s i t i o n p r o d ucts. T h i s l i g h t e m i s s i o n is q u e n c h e d b y either e~ Downloaded by NANYANG TECHNOLOGICAL UNIV on June 21, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch021
m
scavengers or f o r m a t e ,
w h i c h l e d to a m e c h a n i s m i n v o l v i n g the r e a c t i o n of e~
aq
dye i n t e r m e d i a t e .
w i t h the o x i d i z e d
I n a recent extension of this w o r k u t i l i z i n g s e q u e n t i a l
l i g h t flash a n d e l e c t r o n p u l s e i r r a d i a t i o n s , G r o s s w e i n e r a n d R o d d e
(9)
d e d u c e d that the f o r m of o x i d i z e d fluorescein or eosin w h i c h reacts w i t h e~
m
is the O H a d d u c t a n d not the s e m i o x i d i z e d species X .
Furthermore,
the t r i p l e t states of these dyes also react w i t h e~ , l e a d i n g to a n intense a(l
c h e m i l u m i n e s c e n c e f r o m the e x c i t e d s e m i q u i n o n e . T h e latter w o r k i n d i cates that studies of metastable d y e species are feasible w i t h c o m b i n e d flash p h o t o l y t i c a n d p u l s e r a d i o l y t i c m e t h o d s .
Discussion I n a s u r v e y of d y e r a d i a t i o n c h e m i s t r y S w a l l o w (25)
n o t e d that a
n u m b e r of dyes i n aqueous s o l u t i o n react as f o l l o w s : ( a ) I r r a d i a t i o n of aerated solutions i n the absence of o r g a n i c s u b strates leads to i r r e v e r s i b l e o x i d a t i o n , b u t oxygen-free solutions are b l e a c h e d via i r r e v e r s i b l e o x i d a t i o n a n d r e v e r s i b l e r e d u c t i o n . ( b ) W h e n o x i d i z a b l e substrates are present, aerated solutions are r a d i a t i o n resistant, w h i l e oxygen-free solutions are r e v e r s i b l y r e d u c e d . T h e s e effects w e r e e x p l a i n e d b y a general m e c h a n i s m i n v o l v i n g o x i d a t i o n of the d y e b y O H a n d r e d u c t i o n of the d y e b y H atoms a n d the o x i d i z e d o r g a n i c substrate. and
T h e p u l s e r a d i o l y s i s results s h o w that
not H atoms m a k e the greater
e~
m
c o n t r i b u t i o n to d y e r e d u c t i o n i n
n e u t r a l a n d a l k a l i n e solutions a n d that H a n d O H a d d i t i o n m u s t c o n s i d e r e d as w e l l as electron-transfer reactions.
be
T h e f o l l o w i n g general
r a d i o l y s i s m e c h a n i s m indicates the reactions l i k e l y to be significant i n deaerated aqueous solutions of dyes possessing the q u i n o n o i d structure (e.g., azines, t h i a z i n e s , acridines,
D + e
a q
-
D
xanthenes).
r e d
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
(1)
316
RADIATION CHEMISTRY
DOH-
1
( ) 2 a
D + OHD
o x
+ OH"
(2b)
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 21, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch021
(3a)
(3b)
D
D
r e d
r e d
+ D
+ D
E>ox + D
o x
r e d
o
* 2D
(4)
» D + leuco base
(5)
» products
x
(6)
F o r t h e fluoresceins i t has b e e n p r o p o s e d that t h e O H a d d u c t decays b y slow water (or O H " ) elimination ( 5 ) : DOH- ->D
0 X
+ OH"
(7)
a n d that t h e O H a d d u c t is the species r e s p o n s i b l e f o r t h e c h e m i l u m i n e s cence i n d u c e d b y electron-pulse i r r a d i a t i o n (9,
20):
D O H - + e~ -> D * + O H "
(8)
m
[ A n intense l u m i n e s c e n c e has b e e n o b s e r v e d also w h e n I" w a s present (20, 21), a t t r i b u t e d to t h e r e a c t i o n of i o d i n e atoms w i t h t h e r e d u c e d d y e . ] T h e r e d u c t i v e attack is suppressed b y o x y g e n via Reactions 9 a n d 10. +0 ->0 "
e- (U')
2
aq
D
r e d
(9)
2
+ 0 -*D + 0 2
(10)
2
R e a c t i o n 10 is t h e process r e s p o n s i b l e f o r restoring t h e d y e i n p h o t o c h e m i c a l a u t o x i d a t i o n s . T h e r e a c t i o n of 0 " ( o r H 0 - i n a c i d i c solu 2
2
t i o n s ) w i t h dyes is n o t e x p e c t e d to b e fast. T h e o x i d i z a b l e o r g a n i c sub strate scavenges H a n d O H . AH
2
+ O H - ( H ) —> A H - + H 0 ( H ) 2
2
(11)
I n a n u m b e r of cases i t has b e e n s h o w n that the p a r t i a l l y o x i d i z e d sub strate c a n r e d u c e t h e d y e (2, 4, 5,12, 20): D + A H - —» D
r e d
+ A
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
(12)
21.
GROSSWEINER
Organic Table IV.
Dye
Dye Bleaching G Values G(-D) Oxidative
Conditions
Methylene blue
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 21, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch021
317
Dyes
Deaerated Aerated Deaerated w i t h organic substances present Deaerated w i t h formate
Fluorescein
0.6 ± 0.1° 0.68 ±= 0 . 0 8
0.59 0.66
a b c
25 25
a
25 12
a
22 18 22
b 6
2.32 0.95 0.85
22 22 22 22 22 22
b c
c
2.06 1.47° 1.71
2
c
2
Aerated
Safranine T
0.2
a
a
Deaerated Aerated Deaerated w i t h formate Deaerated w i t h H 0 Deaerated w i t h N 0 Aerated w i t h formate 2
1.6 ±
Ref.
2.9 ± 0 . 1 3.15 ± 0.15
Deaerated Aerated Deaerated w i t h formate
Eosin
G(-D) Reductive
0.00
0.65 ±
6
14
0.01
Average of literature values cited in reference. Total of oxidative and reductive decoloration yields. G values corrected for absorption of permanent oxidation product. It is interesting to c o m p a r e the p u l s e r a d i o l y s i s m e c h a n i s m w i t h d y e
b l e a c h i n g y i e l d s r e p o r t e d for l o w intensity, steady i r r a d i a t i o n s IV).
(Table
If n O H r a d i c a l s are n e e d e d to d e c o l o r one d y e m o l e c u l e , b l e a c h i n g
y i e l d s u n d e r i d e a l o x i d i z i n g c o n d i t i o n s s h o u l d be G O H / n i n air-saturated solutions, ^
G ) / n i n nitrous
(GOH +
(GOH +
G
E
e
G ) / n i n the
+
H
p e r o x i d e concentrations H 0 ). 2
2
T a k i n g 2.65,
of
solutions,
moderate
and
0.55
fluorescein,
T h e possible i n t e r m e d i a t e
for
G
O
H
and
, G
e
G
H
radical and molecular products.
T h e values of G ( — D )
T h i s p r e d i c t i o n is i n excellent
m a n y experiments
on methylene
e
+
unstable
i n the
pres
GOH +
G )
b l u e w i t h different substrates
0.8 w i t h the
H
agreement w i t h the average
benzoate, e t h y l a l c o h o l , lactate, f o r m a t e ) . p l a i n e d d i s c r e p a n c y of ^
to 3-4
steps i n c l u d e d i s p r o p o r t i o n a t i o n
ence of o x i d i z a b l e o r g a n i c substrates s h o u l d be 1 / 2 ( G 3.0.
by
leads
a n d safranine T a n d n =
of s e m i o x i d i z e d d y e a n d successive reactions of O H w i t h the
—
and
hydrogen
(i.e., w h e n H a n d O H are not s c a v e n g e d 2.8,
n — 4 for m e t h y l e n e b l u e , for eosin.
oxide-saturated
presence
of
(e.g.,
H o w e v e r , there is a n unex
fluoresceins
w h i c h m a y be c a u s e d
b y the o x i d a t i o n of the s e m i q u i n o n e b y p r i m a r y H 0 . 2
2
T h e extent of
b l e a c h i n g i n deaerated solutions s h o u l d b e c o n t r o l l e d b y the c o m p e t i t i o n b e t w e e n Reactions 5 a n d 6 w i t h the b a c k process, R e a c t i o n 4. T h e l o w values of G ( — D ) f o r the
fluoresceins
are consistent w i t h the m e a s u r e d
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
318
RADIATION CHEMISTRY
rate constants of the r a d i c a l d e c a y reactions
1
T h e methylene blue
(4).
results f o r d e a e r a t e d solutions suggest that the b a c k r e a c t i o n is u n i m p o r tant c o m p a r e d w i t h the r a d i c a l d e c a y processes because the
observed
values of G ( — D ) i n d i c a t e that f o u r O H r a d i c a l s are r e q u i r e d for p e r m a n e n t o x i d a t i o n a n d that a l l H a n d e'
m
Reactions 1, 3, a n d 5.
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 21, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch021
OH-
l e a d to r e v e r s i b l e r e d u c t i o n via
(It is not k n o w n w h e t h e r m e t h y l e n e b l u e forms
or H - a t o m a d d u c t s ) .
T h e low bleaching yields obtained w h e n
aerated solutions of v a r i o u s dyes are i r r a d i a t e d i n the presence o x i d i z a b l e substrate (24)
are e x p l a i n e d b y the s c a v e n g i n g of e~
m
atoms b y o x y g e n to g i v e u n r e a c t i v e 0 ~ 2
of a n and H
( R e a c t i o n 9) a n d the r e a c t i o n
of O H ( a n d p o s s i b l y H ) w i t h the o r g a n i c substance ( R e a c t i o n 1 1 ) .
The
extent of b l e a c h i n g w o u l d s t i l l r e m a i n s m a l l even if the r e a c t e d scavenger reduces the d y e ( R e a c t i o n 12) because of R e a c t i o n 10. F i g u r e 1 shows a c o r r e l a t i o n of the r e p o r t e d e~
&q
the values o b t a i n e d f r o m the D e b y e e q u a t i o n .
rate constants w i t h
(The
calculations
are
b a s e d o n Stokes' l a w f o r the d y e d i f f u s i o n constants, the e x p e r i m e n t a l v a l u e of 4.7 X
10~ sq. cm./sec. for the e~ 3
d i f f u s i o n constant (23),
m
dye
r a d i i f r o m spheres of d e n s i t y 1.3 g r a m / c c . a n d the a p p r o p r i a t e m o l e c u l a r w e i g h t , a n d a n assumed e~
m
r a d i u s of 2.7 A . ) . T h e agreement is reason
a b l y g o o d i n v i e w of the uncertainties i n the c h o i c e of parameters a n d indicates that the n u c l e o p h i l i c attack of the electron o n these dyes is c o n t r o l l e d b y the encounter rate. T h e a v a i l a b l e d a t a s h o w that r e d u c t i o n b y C 0 ~ is m o r e selective, w i t h rate constants r a n g i n g f r o m 2.6 X 10 2
fluorescein
to 5.6 X
10
9
for
7
for m e t h y l e n e b l u e . It w a s suggested ( 5 )
that
the rate constants o b t a i n e d w i t h the xanthenes correlate w i t h the c h a r g e d i s t r i b u t i o n of the q u i n o n o i d structure, w h i l e steric effects at the
re
d u c i b l e c e n t r a l c a r b o n a t o m a n d changes i n the b r i d g e structure m a y be i n v o l v e d i n c o m p a r i s o n s b e t w e e n the various d y e types. A l t h o u g h i t has b e e n o b s e r v e d that the O H r e a c t i o n p r o d u c t s i n the xanthenes b u i l d u p m o r e s l o w l y t h a n those of e~
(5, 20),
m
accurate d e t e r m i n a t i o n s of the
rate constants are c o m p l i c a t e d b y the o c c u r r e n c e of b o t h electron transfer a n d a d d i t i o n reactions. F u r t h e r m o r e , the strong v i s i b l e c o l o r a t i o n of these p r o d u c t s l i m i t s the use of c o m p e t i t i o n m e t h o d s w h i c h h a v e b e e n a p p l i e d to smaller a r o m a t i c molecules. rate constants of 3 ± 10
9
K i n e t i c estimates h a v e l e d to t o t a l O H
1 X 1 0 for the
for r h o d a m i n e B ( T a b l e I I I ) .
of O H w i t h h y d r o q u i n o n e (1.2 X (1)
fluoresceins
9
(Table II) and —
9 X
A c o m p a r i s o n w i t h the r e a c t i o n rate 10 ) 10
a n d b e n z o q u i n o n e (1.2 X
10 ) 9
suggests that the xanthene d y e results are the correct m a g n i t u d e . T h e c h e m i l u m i n e s c e n t reactions of e~
m
w i t h dyes represent a n e w
process w h i c h m a y h a v e b r o a d e r i m p l i c a t i o n s . T h e f o r m a t i o n of e x c i t e d d y e i n R e a c t i o n 8 s h o u l d l e a d to t r i p l e t f o r m a t i o n via intersystem crossing, a l t h o u g h the y i e l d w o u l d be l o w because of c o m p e t i t i o n f r o m R e a c t i o n 1.
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
21.
GROSSWEINER
Organic
Dyes
319
MG
2 +
/
MB ©
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 21, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch021
AO
2 2 , -
< / ©
'
©
/
/
^RHB / 2
0EO 0
/ FL "" k. ' ' i
2
2
»
5
6
IO- x k meas ,0
Figure 1. Rate constants for reaction of e~ with dyes (liters/mole-sec). Ordinate: calculated from Dehye equation for encounter-limited reactions; abscissa: experimental results aa
T h e r e a c t i o n of t r i p l e t d y e w i t h e~n l e a d i n g to t h e excited s e m i q u i n o n e q
has b e e n o b s e r v e d o n l y w i t h
fluorescein 3D + 6 T
a q
a n d eosin thus f a r ( 9 ) : ^D*
r e d
(13)
A l t h o u g h R e a c t i o n 13 w a s i d e n t i f i e d b y u s i n g l i g h t t o excite t h e t r i p l e t dye a n d a n electron p u l s e to generate e~ , i t is possible that b o t h species aq
c a n b e f o r m e d p h o t o c h e m i c a l l y i n c e r t a i n systems i n v o l v i n g s o l v a t e d or t r a p p e d electrons.
T h i s is e q u i v a l e n t to a t w o - q u a n t a process, i n w h i c h
the r e d u c t i o n p o t e n t i a l of t h e e l e c t r o n m a y b e t r a n s f e r r e d t o t h e d y e species d u r i n g t h e l i f e t i m e of t h e e x c i t e d state. It w o u l d b e i n t e r e s t i n g to l e a r n w h e t h e r R e a c t i o n 13 occurs w i t h other aromatics i n p o l a r solvents that c a n solvate electrons i n c l u d i n g b i o l o g i c a l photosensitizers. Acknowledgment T h e a u t h o r is p l e a s e d t o a c k n o w l e d g e t h e s u p p o r t of t h e N a t i o n a l Institutes of H e a l t h o n G r a n t s N o s . G M - 1 0 0 3 8 a n d G M - 1 2 7 1 6 d u r i n g t h e p r e p a r a t i o n of this p a p e r . I n a d d i t i o n , h e thanks G . O . P h i l l i p s of S a l f o r d U n i v e r s i t y f o r p r e p r i n t s of w o r k n o t e d i n t h e text a n d A . H u s a i n a n d A . F . R o d d e , Jr. of M i c h a e l Reese H o s p i t a l a n d M e d i c a l C e n t e r f o r m a k i n g a v a i l a b l e u n p u b l i s h e d results o n eosin p u l s e r a d i o l y s i s .
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
320
RADIATION CHEMISTRY
1
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 21, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch021
Literature Cited (1) Adams, G. E., Michael, B. D., Trans. Faraday Soc. 63, 1171 (1967). (2) Balazs, E. A., Davies, J. W., Phillips, G. O., Scheufele, D. S.,J.Chem. Soc., in press. (3) Baxendale, J. H., etal.,Nature 201, 468 (1964). (4) Chrysochoos, J., Ovadia, J., Grossweiner, L. I., J. Phys. Chem. 71, 1629 (1967). (5) Cordier, P., Grossweiner, L. I.,J.Phys. Chem. 72, 2018 (1968). (6) Cordier, P., Grossweiner, L. I., unpublished result. (7) Grossweiner, L. I., Zwicker, E. F.,J.Chem. Phys. 34, 1411 (1961). (8) Grossweiner, L. I., Rodde, A. F. Jr., Sandberg, G., Chrysochoos, J., Nature 210, 1154 (1966). (9) Grossweiner, L. I., Rodde, A. F. Jr.,J.Phys. Chem. 72, 756 (1968). (10) Kasche, V., Lindqvist, L., Photochem. Photobiol. 4, 923 (1965). (11) Kato, S., Morita, M., Koizumi, M., Bull. Chem. Soc. Japan 37, 117 (1964). (12) Keene, J. P., Land, E. J., Swallow, A. J., "PulseRadiolysis,"M. Ebert, J. P, Keene, A. J. Swallow, J. H. Baxendale, eds., pp. 227-245, Aca demic Press, New York, 1965. (13) Lindqvist, L., Arkiv Kemi 16, 79 (1960). (14) Marketos, D. G., Rakintzis, N. Th., Z. Physik. Chem., N.F. 44, 270 (1965). (15) Matsumoto, S., Bull. Chem. Soc. Japan 37, 491 (1964). (16) Ohno, T., Kato, S., Koizumi, M., Bull. Chem. Soc. Japan 39, 232 (1966). (17) Parker, C. A.,J.Phys. Chem. 63, 26 (1959). (18) Patti, F.,J.Chim. Phys. 52, 38 (1955). (19) Prütz, W., Sommermeyer,K.,Land, E. J., Nature 212, 1043 (1966). (20) Prütz, W., Land, E. J., Biophysik 3, 349 (1967). (21) Prütz, W., Sommermeyer,K.,Biophysik 4, 48 (1967). (22) Rodde, A. F., Jr., Grossweiner, L. I., J. Phys. Chem., in press. (23) Schmidt, K.H.,Buck, W. L., Science 151, 70 (1966). (24) Stevens, B., Sharpe, R. R., Bingham, W. S. W., Photochem. Photobiol. 6, 83 (1967). (25) Swallow, A. J., "Radiation Chemistry of Organic Compounds," pp. 175185, Pergamon Press, Oxford, 1960. RECEIVED December 22, 1967,
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.