The Chemical Composition of Wood - American Chemical Society


The Chemical Composition of Wood - American Chemical Societyhttps://pubs.acs.org/doi/pdfplus/10.1021/ba-1984-0207.ch002c...

5 downloads 138 Views 7MB Size

2 The Chemical Composition of Wood R O G E R C. P E T T E R S E N

Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, W I 53705

This chapter includes overall chemical composition of wood, methods of analysis, structure of hemicellulose components and degree of polymerization of carbohydrates. Tables of data are compiled for woods of several countries. Components include: cellulose (Cross and Bevan, holo-, and alpha-), lignin, pentosans, and ash. Solubilities in 1% sodium hydroxide, hot water, e t h a n o l / benzene, and ether are reported. The data were collected at Forest Products Laboratory (Madison, Wisconsin) from 1927-68 and were previously unpublished. These data include both United States and foreign woods. Previously published data include compositions of woods from Borneo, Brazil, Cambodia, Chile, Colombia, Costa Rica, Ghana, Japan, Mexico, Mozambique, Papua New Guinea, the Philippines, Puerto Rico, Taiwan, and the USSR. Data from more detailed analyses are presented for common temperate-zone woods and include the individual sugar composition (as glucan, xylan, galactan, arabinan, and mannan), uronic anhydride, acetyl, lignin, and ash.

THE CHEMICAL COMPOSITION

of w o o d cannot be defined p r e ­ cisely for a g i v e n tree species o r e v e n for a g i v e n tree. C h e m i c a l c o m p o s i t i o n v a r i e s w i t h t r e e p a r t (root, s t e m , o r b r a n c h ) , t y p e o f w o o d (i.e., n o r m a l , tension, or compression) geographic location, c l i ­ mate, a n d soil conditions. Analytical data accumulated from m a n y years of w o r k a n d f r o m m a n y different laboratories have h e l p e d to define average e x p e c t e d values for the c h e m i c a l c o m p o s i t i o n of w o o d . O r d i n a r y c h e m i c a l analysis can d i s t i n g u i s h b e t w e e n h a r d w o o d s (angiosperms) a n d softwoods (gymnosperms). U n f o r t u n a t e l y , such t e c h ­ n i q u e s c a n n o t b e u s e d to i d e n t i f y i n d i v i d u a l tree species b e c a u s e o f the variation w i t h i n each species a n d the similarities a m o n g m a n y s p e c i e s . F u r t h e r i d e n t i f i c a t i o n is p o s s i b l e w i t h d e t a i l e d c h e m i c a l a n a l This chapter not subject to U.S. copyright. Published 1984, of American Chemical Society In The Chemistry Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

58

THE CHEMS ITRY OF SOLID WOOD

Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

y s i s o f e x t r a c t i v e s ( c h e m o t a x o n o m y ) . C h e m o t a x o n o m y is d i s c u s s e d f u l l y e l s e w h e r e i n t h e l i t e r a t u r e ( I , 2). T h e r e are two major c h e m i c a l c o m p o n e n t s i n w o o d : lignin ( 1 8 35%) a n d c a r b o h y d r a t e ( 6 5 - 7 5 % ) . B o t h are c o m p l e x , p o l y m e r i c m a ­ terials. M i n o r amounts of extraneous materials, mostly i n the form o f o r g a n i c e x t r a c t i v e s a n d i n o r g a n i c m i n e r a l s (ash), a r e also p r e s e n t i n w o o d ( u s u a l l y 4 - 1 0 % ) . O v e r a l l , w o o d has a n e l e m e n t a l c o m p o s i ­ tion of about 5 0 % c a r b o n , 6% h y d r o g e n , 4 4 % oxygen, a n d trace amounts of several metal ions. A c o m p l e t e c h e m i c a l analysis accounts for a l l t h e c o m p o n e n t s of t h e o r i g i n a l w o o d s a m p l e . T h u s , i f w o o d is d e f i n e d as p a r t l i g n i n , part c a r b o h y d r a t e , a n d p a r t e x t r a n e o u s m a t e r i a l , analyses for e a c h of these c o m p o n e n t s s h o u l d s u m to 1 0 0 % . T h e p r o c e d u r e b e c o m e s m o r e c o m p l e x as t h e c o m p o n e n t p a r t s a r e d e f i n e d w i t h g r e a t e r d e t a i l . S u m m a t i v e d a t a a r e f r e q u e n t l y a d j u s t e d to 1 0 0 % b y i n t r o d u c i n g c o r ­ r e c t i o n f a c t o r s i n t h e a n a l y t i c a l c a l c u l a t i o n s . W i s e a n d c o w o r k e r s (3) presented an i n t e r e s t i n g study o n the s u m m a t i v e analysis of w o o d and analyses of the carbohydrate fractions. T h e c o m p l e t e analytical r e p o r t a l s o i n c l u d e s d e t a i l s o f t h e s a m p l e , s u c h as s p e c i e s , a g e , a n d l o c a t i o n o f t h e t r e e , h o w t h e s a m p l e w a s o b t a i n e d from t h e t r e e , a n d f r o m w h a t p a r t o f t h e t r e e . T h e t y p e o f w o o d a n a l y z e d is a l s o i m p o r ­ tant; i . e . , c o m p r e s s i o n , t e n s i o n , or n o r m a l w o o d . Vast a m o u n t s o f d a t a a r e a v a i l a b l e o n t h e c h e m i c a l c o m p o s i t i o n o f w o o d . F e n g e l a n d G r o s s e r (4) m a d e a c o m p i l a t i o n f o r t e m p e r a t e z o n e w o o d s . T h i s c h a p t e r is a c o m p i l a t i o n o f d a t a f o r m a n y d i f f e r e n t species f r o m a l l parts of the w o r l d , a n d i n c l u d e s m u c h of the data i n R e f e r e n c e 4. T h e t a b l e s at t h e e n d o f t h i s c h a p t e r s u m m a r i z e t h e s e data.

Chemical Components Carbohydrates. T h e carbohydrate portion of wood comprises cellulose a n d the h e m i c e l l u l o s e s . C e l l u l o s e content ranges f r o m 40 to 5 0 % o f t h e d r y w o o d w e i g h t , a n d h e m i c e l l u l o s e s range f r o m 2 5 to 35%.

CELLULOSE.

C e l l u l o s e is a g l u c a n p o l y m e r c o n s i s t i n g o f l i n e a r c h a i n s o f 1 , 4 - p - b o n d e d a n h y d r o g l u c o s e u n i t s . ( T h e n o t a t i o n 1,4-β describes the b o n d linkage a n d the configuration of the oxygen atom b e t w e e n adjacent glucose units.) F i g u r e 1 shows a structural diagram of a portion of a glucan c h a i n . T h e n u m b e r of sugar units i n one m o l e c u l a r c h a i n is r e f e r r e d to as t h e d e g r e e o f p o l y m e r i z a t i o n ( D P ) . E v e n t h e m o s t u n i f o r m s a m p l e has m o l e c u l a r c h a i n s w i t h s l i g h t l y different D P v a l u e s . T h e average D P for t h e m o l e c u l a r chains i n a g i v e n s a m p l e is d e s i g n a t e d b y D P .

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

60

THE CHEMS ITRY OF SOLID WOOD

G o r i n g a n d T i m e l l (5) d e t e r m i n e d t h e D P f o r n a t i v e c e l l u l o s e s from several sources of plant material. T h e y used a nitration isolation p r o c e d u r e that a t t e m p t s to m a x i m i z e the y i e l d w h i l e m i n i m i z i n g the depolymerization of the cellulose. These molecular weight d e t e r m i ­ nations, done b y light-scattering experiments, indicate w o o d c e l l u ­ l o s e h a s a D P o f at l e a s t 9 , 0 0 0 - 1 0 , (XX), a n d p o s s i b l y as h i g h as 1 5 , 0 0 0 . A D P of 10,000 w o u l d m e a n a linear chain length of approximately 5 μπι i n w o o d . T h e D P o b t a i n e d f r o m l i g h t - s c a t t e r i n g e x p e r i m e n t s is b i a s e d u p ­ w a r d because light scattering increases exponentially w i t h molecular s i z e . T h e v a l u e o b t a i n e d is u s u a l l y r e f e r r e d t o as t h e w e i g h t e d D P o r D P . T h e n u m b e r a v e r a g e d e g r e e o f p o l y m e r i z a t i o n ( D P ) is u s u ­ ally obtained from o s m o m e t r y measurements. These measurements are l i n e a r w i t h respect to m o l e c u l a r size a n d , therefore, a m o l e c u l e is c o u n t e d e q u a l l y as o n e m o l e c u l e r e g a r d l e s s o f i t s s i z e . T h e r a t i o o f D P t o D P is a m e a s u r e o f t h e m o l e c u l a r w e i g h t d i s t r i b u t i o n . T h i s r a t i o is n e a r l y o n e f o r n a t i v e c e l l u l o s e i n s e c o n d a r y c e l l w a l l s o f p l a n t s (6). T h e r e f o r e , t h i s c e l l u l o s e is m o n o d i s p e r s e a n d c o n t a i n s m o l ­ ecules o f o n l y o n e size. C e l l u l o s e i n t h e p r i m a r y w a l l has a l o w e r D P a n d is t h o u g h t t o b e p o l y d i s p e r s e . (See R e f e r e n c e 7 f o r a d i s c u s s i o n of molecular w e i g h t d i s t r i b u t i o n i n synthetic polymers.)

Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

W

W

n

n

N a t i v e c e l l u l o s e is p a r t i a l l y c r y s t a l l i n e . X - R a y d i f f r a c t i o n e x p e r ­ i m e n t s i n d i c a t e c r y s t a l l i n e c e l l u l o s e (Valonia ventricosa) has space g r o u p s y m m e t r y P 2 ! w i t h a = 16.34, b = 15.72, c = 10.38 Â, a n d 7 = 9 7 . 0 ° (8). T h e u n i t c e l l c o n t a i n s e i g h t c e l l o b i o s e m o i e t i e s . T h e m o l e c u l a r chains pack i n layers that are h e l d together b y w e a k v a n d e r W a a l s ' f o r c e s ( F i g u r e 2a). T h e l a y e r s c o n s i s t o f p a r a l l e l c h a i n s o f anhydroglucose units, a n d the chains are h e l d together b y i n t e r m o l e c u l a r h y d r o g e n b o n d s . T h e r e are also i n t r a m o l e c u l a r h y d r o g e n b o n d s b e t w e e n t h e a t o m s o f a d j a c e n t g l u c o s e r e s i d u e s ( F i g u r e 2b). T h i s s t r u c t u r e is c a l l e d c e l l u l o s e I . T h e r e a r e at l e a s t t h r e e o t h e r s t r u c t u r e s r e p o r t e d f o r m o d i f i e d c r y s t a l l i n e c e l l u l o s e . T h e m o s t i m p o r t a n t is c e l l u l o s e I I , o b t a i n e d b y m e r c e r i z a t i o n o r r e g e n e r a t i o n o f n a t i v e c e l l u l o s e . Mercerization is t r e a t m e n t o f c e l l u l o s e w i t h s t r o n g a l k a l i . Regeneration is t r e a t m e n t o f c e l l u l o s e w i t h s t r o n g a l k a l i a n d c a r b o n d i s u l f i d e to f o r m a s o l u b l e x a n t h a t e d e r i v a t i v e . T h e d e r i v a t i v e is c o n v e r t e d b a c k t o c e l l u l o s e a n d r e p r e c i p i t a t e d as r e g e n e r a t e d c e l l u l o s e . T h e s t r u c t u r e o f c e l l u l o s e I I ( r e g e n e r a t e d ) h a s s p a c e g r o u p s y m m e t r y Ρ2χ w i t h a = 8 . 0 1 , b = 9.04, c = 10.36 Â, a n d 7 = 117.1°, a n d t w o c e l l o b i o s e m o i e t i e s p e r u n i t c e l l (9). T h e p a c k i n g a r r a n g e m e n t is m o d i f i e d i n c e l l u l o s e I I , a n d p e r m i t s a m o r e intricate h y d r o g e n - b o n d e d n e t w o r k that extends b e t w e e n l a y e r s as w e l l as w i t h i n l a y e r s ( F i g u r e 3). T h e r e s u l t is a

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

PETTERSEN

The Chemical Composition of Wood

61

Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

2.

Figure 2. Axial projection (top) and planar projection (bottom) of the crystal structure of ceUuhse I. The planar projection shows the hydrogenbonding network within the layers. (Reproduced with permission from Ref. 8. Copyright 1974, Elsevier Scientific Publishing Company, Amsterdam.)

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

62

THE CHEMS ITRY OF SOLID WOOD

Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

Figure 3. Axial projection of the crystal structure of cellulose II. (Repro­ duced with permission from Ref 10. Copyright 19/8, Butterworth ir Co. (Publishers) LtdT) m o r e t h e r m o d y n a m i c a l l y stable substance. E v i d e n t l y , all native c e l ­ luloses have t h e s t r u c t u r e o f cellulose I. C e l l u l o s e is i n s o l u b l e i n m o s t s o l v e n t s i n c l u d i n g s t r o n g a l k a l i . I t is d i f f i c u l t t o i s o l a t e f r o m w o o d i n p u r e f o r m b e c a u s e i t is i n t i m a t e l y associated w i t h the l i g n i n a n d hemicelluloses. A n a l y t i c a l methods of cellulose preparation are discussed i n the section on " A n a l y t i c a l P r o ­ cedures."

HEMICELLULOSES.

H e m i c e l l u l o s e s are m i x t u r e s of polysaccha­ rides s y n t h e s i z e d i n w o o d a l m o s t e n t i r e l y f r o m g l u c o s e , m a n n o s e , galactose, xylose, arabinose, 4 - O - m e t h y l g l u c u r o n i c a c i d , a n d galacturonic acid residues. S o m e h a r d w o o d s c o n t a i n trace amounts of rhamnose. G e n e r a l l y , hemicelluloses are of m u c h l o w e r m o l e c u l a r w e i g h t than cellulose a n d s o m e are b r a n c h e d . T h e y are i n t i m a t e l y a s s o c i a t e d w i t h c e l l u l o s e a n d a p p e a r t o c o n t r i b u t e as a s t r u c t u r a l c o m p o n e n t i n the plant. S o m e hemicelluloses are present i n abnor­ m a l l y l a r g e a m o u n t s w h e n t h e p l a n t is u n d e r s t r e s s ; e . g . , c o m p r e s s i o n w o o d h a s a h i g h e r t h a n n o r m a l g a l a c t o s e c o n t e n t as w e l l as a h i g h e r lignin content (II). H e m i c e l l u l o s e s are soluble i n alkali a n d easily h y d r o l y z e d b y acids. T h e s t r u c t u r e o f h e m i c e l l u l o s e s c a n b e u n d e r s t o o d b y first c o n ­ s i d e r i n g t h e c o n f o r m a t i o n o f t h e m o n o m e r u n i t s ( F i g u r e 4). T h e r e a r e t h r e e e n t r i e s u n d e r e a c h m o n o m e r i n F i g u r e 4. I n e a c h e n t r y , the l e t t e r d e s i g n a t i o n s D a n d L refer to a s t a n d a r d c o n f i g u r a t i o n for the two optical isomers of glyceraldehyde, the simplest carbohydrate. T h e G r e e k l e t t e r s α a n d β r e f e r to t h e c o n f i g u r a t i o n of the h y d r o x y l g r o u p at c a r b o n a t o m 1. T h e t w o c o n f i g u r a t i o n s a r e c a l l e d anomers. T h e first e n t r y is a s h o r t e n e d f o r m o f t h e s u g a r n a m e . T h e s e c o n d e n t r y i n d i c a t e s t h e r i n g s t r u c t u r e . P y r a n o s e refers to a s i x - m e m b e r e d ring i n t h e c h a i r o r b o a t f o r m a n d f u r a n o s e r e f e r s to a five-membered r i n g . T h e t h i r d e n t r y is a n a b b r e v i a t i o n c o m m o n l y u s e d for t h e s u g a r residue in polysaccharides.

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

2.

PETTERSEN

The Chemical Composition of Wood

/3-D-Glucose 0-D-Glucopyranose £-D-Glup

/3-D-Mannose /3-D-Mannopyranose 0-D-Manp

/3-D-Qalactose /3-D-Galactopyranose 0-D-Galp

£-D-XyIose /3-D-Xylopyranose 0-D-Xylp

H

OH

Η

63

μ

.Ο. CH,0 OH

ΗΟΗΧ Η α-L-Arab i nose of-L- Arabinof uranose a-L-Araf

OH 4-0- MethyIgucuronic acid 4-O-Methylglucopyranosyluronic acid 4-O-Me-a-D-GlupA

Figure 4. Monomer components of wood hemicelluloses.

F i g u r e 5 shows a partial structure of a c o m m o n h a r d w o o d h e m i cellulose, O-acetyl-4-O-methylglucuronoxylan. T h e entire molecule c o n s i s t s o f a b o u t 2 0 0 β-D-xylopyranose r e s i d u e s l i n k e d i n a l i n e a r c h a i n b y (1 —> 4) g l y c o s i d i c b o n d s . A p p r o x i m a t e l y 1 o f 10 o f t h e x y l o s e residues hasa 4 - O - m e t h y l g l u c u r o n i c acid residue b o n d e d to it t h r o u g h t h e h y d r o x y l a t t h e 2 ring p o s i t i o n . A p p r o x i m a t e l y 7 o f 1 0 of the xylose residues have acetate groups b o n d e d to e i t h e r t h e 2 o r 3 r i n g p o s i t i o n . T h i s c o m p o s i t i o n is s u m m a r i z e d i n F i g u r e 5 i n a n abbreviated structure diagram. H a r d w o o d xylans contain a n average of two xylan b r a n c h i n g chains p e r macromolecule. T h e branches are p r o b a b l y q u i t e s h o r t (12). Table I lists t h e m o s t a b u n d a n t o f t h e w o o d h e m i c e l l u l o s e s . T h e

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

Softwood

Larch wood

Hardwood

Hardwood

Arabinoglucuronoxylan

Arabinogalactan

Glucuronoxylan

Glucomannan 2--5

1 5 -- 3 0

5- -35

7- -10

10-- 1 5

5--8

β-D-Manp β-D-Glup

Acetyl

β-D-GlupA β-D-Xylp 4-O-Me-a-DGlupA

a-L-Ara/ β-L-Arap

β-D-Galp

a-L-Ara/

β-D-Xylp 4-O-Me-a-DGlupA

β-D-Manp β-D-Glup a-D-Galp Acetyl

/\ceiyi

aβ-D-Glup -D-Galp

β-D-Manp

Units

1-2

2/3 1/3 Little 10 1 7

1.3 6

4 1 0.1 1 10 2

3 1 1

Molar Ratios

Composition

b

0

n

1 -> 4

1 —• 4

H ->

1 —> 3 1 3, 1 -> 6 1 6 1 —> 3 1 —» 6 4 1 —» 2 1

1 —» 4 1 -» 2

4 1 4 1 -> 6

1

4 1 -> 4 1 -» 6

1

Linkage

Components

T h e asterisk represents a partial soluhility. D P is the n u m b e r average d e g r e e o f p o l y m e r i z a t i o n , usually obtained b y osmometry. ( R e p r o d u c e d with p e r m i s s i o n from Ref. 6. C o p y r i g h t 1981, A c a d e m i c Press.)

Softwood

(Galacto)Glucomannan

Occurrence

Softwood

Type

Galactoglucomannan

Hemicellulose

Amount (% of wood)

Table I. T h e M a j o r Hemicellulose

Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

0

borate

Alkaline

borate

Alkali, dimethyl sulfoxide*

Alkali, dimethyl sulfoxide, * water* Water

Alkaline

Alkali, water*

Solubility

200

200

200

100

100

100

66

THE CHEMS ITRY OF SOLID WOOD

Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

m e t h o d s u s e d for the isolation a n d s t r u c t u r a l c h a r a c t e r i z a t i o n o f each of these materials are b e y o n d the scope of this chapter (13-15). Lignin. L i g n i n is a p h e n o l i c s u b s t a n c e c o n s i s t i n g o f a n i r r e g u l a r array of variously b o n d e d h y d r o x y - a n d methoxy-substituted p h e n y l p r o p a n e units. T h e precursors of l i g n i n biosynthesis are p-eoum a r y l a l c o h o l (I), c o n i f e r y l a l c o h o l (II), a n d s i n a p y l a l c o h o l (III). I is

OCH.

0CH

CH o 3

o

OH I

II

III

a m i n o r p r e c u r s o r o f s o f t w o o d a n d h a r d w o o d l i g n i n s ; I I is t h e p r e ­ d o m i n a n t p r e c u r s o r of softwood l i g n i n ; a n d II a n d III are b o t h p r e ­ c u r s o r s o f h a r d w o o d l i g n i n (15). T h e s e a l c o h o l s a r e l i n k e d i n l i g n i n b y e t h e r a n d c a r b o n - c a r b o n b o n d s . F i g u r e 6 (15) is a s c h e m a t i c s t r u c t u r e o f a s o f t w o o d l i g n i n m e a n t to i l l u s t r a t e t h e v a r i e t y o f s t r u c ­ tural components. The 3,5-dimethoxy-substituted aromatic ring n u m b e r 13 o r i g i n a t e s f r o m s i n a p y l a l c o h o l , I I I , a n d is p r e s e n t o n l y i n t r a c e a m o u n t s ( < 1 % ) (16). F i g u r e 6 d o e s n o t s h o w a l i g n i n - c a r ­ b o h y d r a t e c o v a l e n t b o n d . T h e r e has b e e n m u c h c o n t r o v e r s y c o n ­ c e r n i n g t h e e x i s t e n c e o f this b o n d , b u t e v i d e n c e has b e e n a c c u m u ­ l a t i n g i n i t s s u p p o r t (15, 17). A s t r u c t u r e p r o p o s e d f o r h a r d w o o d l i g n i n (Fagus silvatica L . ) is s i m i l a r t o t h a t o f F i g u r e 6, e x c e p t t h a t t h e r e a r e t h r e e t i m e s as m a n y s y r i n g y l p r o p a n e u n i t s as g u a i a c y l p r o p a n e u n i t s (18). T h e s e m o i e t i e s are d e r i v e d f r o m I I I a n d I I , r e s p e c t i v e l y . T h e ratio of s y r i n g y l to g u a i a c y l m o i e t i e s is o f t e n o b t a i n e d b y m e a s u r i n g t h e r e l a t i v e a m o u n t s of syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde) and va­ n i l l i n ( 4 - h y d r o x y - 3 - m e t h o x y b e n z a l d e h y d e ) g e n e r a t e d as p r o d u c t s o f n i t r o b e n z e n e o x i d a t i o n o f l i g n i n (19). A b e t t e r m e t h o d is t o d e t e r m i n e the products f o r m e d from the two types of moieties on permanganate o x i d a t i o n o f m e t h y l a t e d l i g n i n s (20). L i g n i n can be isolated b y one of several methods. A c i d h y d r o ­ l y s i s o f w o o d i s o l a t e s K l a s o n l i g n i n , w h i c h c a n b e q u a n t i f i e d (see " A n a l y t i c a l P r o c e d u r e s " ) , b u t is t o o s e v e r e l y d e g r a d e d f o r u s e i n s t r u c t u r a l s t u d i e s . B j o r k m a n ' s (21) m i l l e d w o o d l i g n i n p r o c e d u r e y i e l d s a l i g n i n t h a t is m u c h l e s s d e g r a d e d a n d i s , t h u s , m o r e u s e f u l

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

68

THE CHEMS ITRY OF SOLID WOOD

Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

for s t r u c t u r a l s t u d i e s . T h e f o l l o w i n g are e x a m p l e s o f t h e w e i g h t av­ erage m o l e c u l a r w e i g h t of l i g n i n s isolated b y u s i n g the m i l l e d w o o d l i g n i n p r o c e s s : s p r u c e [Picea abies ( L . ) K a r s t ] , 1 5 , 0 0 0 ; a n d s w e e t g u m (Liquidambar styraciflua L . ) , 1 6 , 0 0 0 (22). T h e s e v a l u e s a r e l o w e r than the molecular weight of the original lignin because fragmenta­ tion of the lignin molecules results from the ball m i l l i n g procedure. L i g n i n for s t r u c t u r a l s t u d i e s c a n also b e o b t a i n e d b y e n z y m a t i c h y ­ d r o l y s i s o f t h e c a r b o h y d r a t e (23). W o o d is g r o u n d i n a v i b r a t o r y b a l l m i l l and then treated w i t h cellulytic enzymes. T h e isolated lignin contains 1 2 - 1 4 % carbohydrate. M e t h o x y l c o n t e n t is u s e d t o c h a r a c t e r i z e l i g n i n s . E l e m e n t a l a n d m e t h o x y l a n a l y s i s o f s p r u c e (Picea abies ( L . ) K a r s t . ) m i l l e d w o o d l i g n i n i n d i c a t e s a c o m p o s i t i o n C H . 9 2 0 . 4 o ( O C H ) . 9 2 (15, 24). B e e c h (Fagus silvatica L . ) m i l l e d w o o d l i g n i n has a c o m p o s i t i o n C H 7 . 4 9 0 2 . 5 3 ( O C H 3 ) 9 (24). T h i s i n f o r m a t i o n h e l p s l i g n i n c h e m i s t s u n d e r s t a n d w h a t p r e c u r s o r s w e r e u s e d for the biosynthesis of l i g n i n . A n e x c e l l e n t , c o m p r e h e n s i v e b o o k o n l i g n i n is e d i t e d b y S a r k a n e n a n d L u d w i g (25). Extraneous C o m p o n e n t s . T h e extraneous c o m p o n e n t s (extrac­ t i v e s a n d ash) i n w o o d a r e t h e s u b s t a n c e s o t h e r t h a n c e l l u l o s e , h e m i ­ c e l l u l o s e s , a n d l i g n i n . T h e y d o n o t c o n t r i b u t e to t h e c e l l w a l l s t r u c ­ ture, a n d most are soluble i n neutral solvents. T h e detailed c h e m i s t r y o f w o o d e x t r a c t i v e s c a n b e f o u n d e l s e w h e r e (26). A r e v i e w o f e x t r a c ­ t i v e s i n e a s t e r n U . S . h a r d w o o d s is a v a i l a b l e (27). 9

9

7

2

3

0

h3

Extractives — the extraneous material soluble i n neutral sol­ v e n t s — c o n s t i t u t e 4 - 1 0 % of the d r y w e i g h t of n o r m a l w o o d of species t h a t g r o w i n t e m p e r a t e c l i m a t e s . T h e y m a y b e as m u c h as 2 0 % o f the w o o d of t r o p i c a l species. E x t r a c t i v e s are a variety of organic c o m ­ p o u n d s i n c l u d i n g fats, w a x e s , a l k a l o i d s , p r o t e i n s , s i m p l e a n d c o m p l e x phenolics, s i m p l e sugars, pectins, mucilages, gums, resins, terpenes, starches, glycosides, saponins, a n d essential oils. M a n y of these func­ t i o n as i n t e r m e d i a t e s i n t r e e m e t a b o l i s m , as e n e r g y r e s e r v e s , o r as part of the tree's defense m e c h a n i s m against m i c r o b i a l attack. T h e y c o n t r i b u t e to w o o d p r o p e r t i e s s u c h as c o l o r , o d o r , a n d d e c a y r e s i s ­ tance. Ash is t h e i n o r g a n i c r e s i d u e r e m a i n i n g a f t e r i g n i t i o n at a h i g h t e m p e r a t u r e . I t is u s u a l l y l e s s t h a n 1 % o f w o o d f r o m t e m p e r a t e z o n e s . It is s l i g h t l y h i g h e r i n w o o d f r o m t r o p i c a l c l i m a t e s .

Carbohydrate and Lignin Distribution Carbohydrates. T h e m o r p h o l o g i c a l parts of the cell w a l l of a c o n i f e r a r e s h o w n i n C h a p t e r 1, F i g u r e l b . M o s t o f w o o d c a r b o h y ­ d r a t e is i n t h e m a s s i v e s e c o n d a r y w a l l , p a r t i c u l a r l y i n S . Y o u n g t r a c h e i d s h a v e b e e n i s o l a t e d (28) at v a r i o u s stages o f c e l l w a l l d e v e l o p 2

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

2.

PETTERSEN

69

The Chemical Composition of Wood

m e n t , a n d t h e n the s e p a r a t e d fractions w e r e a n a l y z e d for the five w o o d sugars. Table II lists t h e results o b t a i n e d b y u s i n g this m e t h o d o n b i r c h (Betula verrucosa E h r h . ) a n d S c o t s p i n e (Pinus sylvestris L . ) (29) f i b e r s . T h e v a l u e s a r e r e l a t i v e a n d s u m to 1 0 0 % f o r a g i v e n m o r p h o l o g i c a l p a r t . T h i s m e t h o d has d i f f i c u l t y i n d i s t i n g u i s h i n g t h e presence of the v e r y t h i n S . A tentative v o l u m e ratio was d e t e r m i n e d 3

for t h e l i g n i n - f r e e l a y e r s o f t h e p i n e a n d b i r c h f i b e r s b y u s i n g p h o ­ t o m i c r o g r a p h s of transverse sections. T a k i n g the p r o p o r t i o n to b e m i d d l e l a m e l l a + p r i m a r y c e l l w a l l ( M L + P ) : S : S : S , the values are 2 : 1 0 : 7 8 : 1 0 f o r p i n e fibers (28) a n d 3 : 1 5 : 7 6 : 6 f o r b i r c h (29). A s s u m i n g the d e n s i t y of t h e c e l l w a l l to b e constant, t h e v o l u m e ratios b e c o m e a comparison of amounts of polysaccharide i n each layer. Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

1

2

3

Lignin. T h e d i s t r i b u t i o n of lignin i n the different m o r p h o l o g ­ ical regions of w o o d m i c r o s t r u c t u r e has b e e n s t u d i e d u s i n g U V m i ­ c r o s c o p y (30). I n s p r u c e (Picea mariana M i l l . ) t r a c h e i d s , i t w a s d e ­ t e r m i n e d that 7 2 % a n d 8 2 % of the l i g n i n was i n the secondary c e l l w a l l s o f e a r l y w o o d a n d l a t e w o o d , r e s p e c t i v e l y (31). T h e r e m a i n d e r was located i n the m i d d l e l a m e l l a a n d c e l l corners. I n b i r c h w o o d (Betula papyrifera M a r s h . ) , 7 1 . 3 % of the l i g n i n was of the s y r i n g y l t y p e a n d w a s f o u n d i n t h e s e c o n d a r y w a l l s o f t h e fibers ( 5 9 . 9 % ) a n d ray cells (11.4%). A n a d d i t i o n a l 1 0 . 9 % of the l i g n i n was of the guaiacyl type a n d was f o u n d i n the secondary walls of the vessels (9.4%) a n d t h e v e s s e l m i d d l e l a m e l l a (1.5%). T h e r e m a i n d e r (17.7%) w a s m i x e d s y r i n g y l - a n d g u a i a c y l - t y p e a n d w a s i n t h e fiber m i d d l e l a m e l l a (32). C a u t i o n is n e e d e d i n i n t e r p r e t i n g t h e s y r i n g y l / g u a i a c y l distribution i n h a r d w o o d lignins; m e t h o x y l analyses of isolated m o r ­ p h o l o g i c a l p a r t s o f o a k fibers a n d v e s s e l s i n d i c a t e s a r a t h e r u n i f o r m s y r i n g y l / g u a i a c y l c o n t e n t (33).

Analytical Procedures Carbohydrates. T h e r e are a n u m b e r of analytical d e t e r m i n a ­ tions associated w i t h the carbohydrate p o r t i o n of w o o d .

HOLOCELLULOSE.

H o l o c e l l u l o s e is t h e t o t a l p o l y s a c c h a r i d e ( c e l ­ l u l o s e a n d h e m i c e l l u l o s e s ) c o n t e n t o f w o o d , a n d m e t h o d s f o r its d e ­ t e r m i n a t i o n seek to r e m o v e a l l o f the l i g n i n f r o m w o o d w i t h o u t d i s ­ t u r b i n g t h e c a r b o h y d r a t e s . T h e p r o c e d u r e g e n e r a l l y u s e d (34) w a s a d o p t e d as T a p p i S t a n d a r d T 9 m ( n o w u s e f u l m e t h o d 2 4 9 ) , a n d as A S T M S t a n d a r d D 1 1 0 4 . E x t r a c t e d w o o d m e a l is t r e a t e d a l t e r n a t e l y w i t h c h l o r i n e gas a n d 2 - a m i n o e t h a n o l u n t i l a w h i t e r e s i d u e ( h o l o c e l ­ l u l o s e ) r e m a i n s . T h e a c i d c h l o r i t e m e t h o d is a l s o u s e d (3). T h e J

2

T a p p i standards are m a i n t a i n e d b y the T e c h n i c a l Association o f P u l p a n d Paper Industry, Atlanta, G a . A S T M standards are m a i n t a i n e d b y the A m e r i c a n Society for Testing Materials, P h i l a d e l p h i a , Pa. 1

2

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

Also contains a h i g h p e r c e n t a g e of pectic a c i d . ( R e p r o d u c e d w i t h p e r m i s s i o n from Ref. 29. C o p y r i g h t 1961,

a

20.1 35.5 7.7 29.4 7.3

Galactan Cellulose Glucomannan Arabinan Glucuronoarabinoxylan

1

S Ehrh.) 0.7 48.0 2.1 1.5 47.7 L.) 1.6 66.5 24.6 0.0 7.4

2

S (outer

J o h n W i l e y & Sons.)

verrucosa 1.2 49.8 2.8 1.9 44.1 P i n e (Pinus sylvestris 5.2 61.5 16.9 0.6 15.7

B i r c h (Betula

a

+ P

part) 2

S (inner

3.2 47.5 27.2 2.4 19.4

0.0 60.0 5.1 0.0 35.1

part)

of Polysaccharides i n the Different L a y e r s of the F i b e r W a l l

16.9 41.4 3.1 13.4 25.2

Ml

Percentages

Galactan Cellulose Glucomannan Arabinan Glucuronoxylan

Polysaccharide

T a b l e Π.

Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

2.

FETTERSΕΝ

The Chemical Composition of Wood

71

p r o d u c t , c a l l e d c h l o r i t e h o l o c e l l u l o s e , is s i m i l a r t o c h l o r i n e h o l o c e l ­ lulose. T h e chlorite m e t h o d removes a fraction more of the h e m i ­ celluloses than the chlorine m e t h o d . A l p h a c e l l u l o s e is o b t a i n e d a f t e r t r e a t m e n t o f t h e h o l o c e l l u l o s e w i t h 1 7 . 5 % N a O H (see A S T M S t a n d a r d D 1103). This procedure removes most, but not all, of the hemicelluloses. BE Cross and B e v a n cellulose con­ sists l a r g e l y o f p u r e c e l l u l o s e , b u t a l s o c o n t a i n s s o m e h e m i c e l l u l o s e s . It is o b t a i n e d b y c h l o r i n a t i o n o f w o o d m e a l , f o l l o w e d b y w a s h i n g w i t h 3 % S 0 a n d 2 % s o d i u m s u l f i t e ( N a S 0 ) w a t e r s o l u t i o n s . T h e final s t e p is t r e a t m e n t i n b o i l i n g N a S 0 s o l u t i o n . T h e a b s e n c e o f a c h a r ­ acteristic r e d (angiosperm) or b r o w n (gymnosperm) color d e v e l o p e d in the presence of c h l o r i n a t e d l i g n i n signals c o m p l e t e l i g n i n r e m o v a l . F o r a d i s c u s s i o n o f t h e m e t h o d a n d its m o d i f i c a t i o n s , see R e f e r e n c e 35. K u r s c h n e r c e l l u l o s e is o b t a i n e d b y r e f l u x i n g t h e w o o d s a m p l e t h r e e t i m e s f o r 1 h w i t h a 1:4 v o l u m e m i x ­ t u r e o f c o n c e n t r a t e d n i t r i c a c i d a n d e t h y l a l c o h o l (37). T h e w a s h e d a n d d r i e d r e s i d u e is w e i g h e d as K u r s c h n e r c e l l u l o s e . T h e p r o d u c t contains a small amount of hemicelluloses. [The cellulose d e t e r m i n e d f o r t h e G h a n a n a n d R u s s i a n w o o d s (see i n T a b l e s V I a n d X I ) is K u r s c h ­ n e r c e l l u l o s e ] . T h e m e t h o d is n o t w i d e l y u s e d b e c a u s e i t d e s t r o y s s o m e o f t h e c e l l u l o s e a n d t h e n i t r i c a c i d / a l c o h o l m i x t u r e is p o t e n t i a l l y explosive.

ALPHA CELLULOSE. CROSS AND

VAN CELLULOSE.

2

2

Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

2

3

3

KURSCHNER CELLULOSE.

PENTOSAN.

Pentosan analysis measures the amount of fivec a r b o n sugars p r e s e n t i n w o o d (xylose a n d arabinose residues). A l ­ t h o u g h t h e h e m i c e l l u l o s e s c o n s i s t o f a m i x t u r e o f five- a n d s i x - c a r b o n s u g a r s (see d i s c u s s i o n o f h e m i c e l l u l o s e s ) , t h e p e n t o s a n a n a l y s i s r e ­ p o r t s t h e x y l a n a n d a r a b i n a n c o n t e n t as i f t h e five-carbon s u g a r s w e r e p r e s e n t as p u r e p e n t a n s . P e n t o s e s a r e m o r e a b u n d a n t i n h a r d w o o d s t h a n s o f t w o o d s ; t h e d i f f e r e n c e is d u e t o a h i g h e r x y l o s e c o n t e n t i n h a r d w o o d s (see T a b l e X I I I f o r e x a m p l e s ) . T a p p i s t a n d a r d Τ 223 o u t l i n e s the p r o c e d u r e for p e n t o s a n a n a l ­ y s i s . B r i e f l y , w o o d m e a l is b o i l e d i n 3 . 8 5 Ν H C l w i t h s o m e N a C l a d d e d . F u r f u r a l is g e n e r a t e d a n d d i s t i l l e d i n t o a c o l l e c t i o n f l a s k . T h e f u r f u r a l is d e t e r m i n e d c o l o r i m e t r i c a l l y w i t h o r c i n o l - i r o n ( I I I ) c h l o r i d e r e a g e n t . A n o t h e r m e t h o d a l s o g e n e r a t e s f u r f u r a l , a n d t h e f u r f u r a l is determined gravimetrically by precipitation with 1,3,5-benzenetriol. These a n d other methods of pentosan analysis are d e s c r i b e d a n d d i s c u s s e d i n B r o w n i n g ' s b o o k (36). T h i s analysis r e ­ q u i r e s a c i d h y d r o l y s i s o f t h e p o l y s a c c h a r i d e to y i e l d a s o l u t i o n m i x ­ t u r e o f t h e five w o o d s u g a r m o n o m e r s , i . e . , g l u c o s e , x y l o s e , g a l a c ­ t o s e , a r a b i n o s e , a n d m a n n o s e . T h e s o l u t i o n is n e u t r a l i z e d , filtered,

CHROMATOGRAPHIC ANALYSIS OF WOOD SUGARS.

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

72

THE CHEMS ITRY OF SOLID WOOD

a n d the sugars c h r o m a t o g r a p h i c a l l y separated a n d q u a n t i f i e d . G e n ­ e r a l l y t h i s m e t h o d is a c c e p t e d as t h e s t a n d a r d o f h y d r o l y s i s (37). I n t h i s p r o c e d u r e , w o o d m e a l is t r e a t e d w i t h 7 2 % H S 0 at 3 0 ° C f o r 1 h to d e p o l y m e r i z e the c a r b o h y d r a t e s . R e v e r s i o n p r o d u c t s ( r e c o m b i n e d s u g a r m o n o m e r s ) a r e f u r t h e r h y d r o l y z e d i n 3 % H S 0 at 1 2 0 ° C f o r 1 h . T h e s o l u t i o n is t h e n filtered, a n d t h e s o l i d r e s i d u e is w a s h e d , d r i e d , a n d w e i g h e d as K l a s o n l i g n i n (see " L i g n i n " l a t e r ) . T h e f i l t r a t e is n e u t r a l i z e d w i t h b a r i u m ( I I ) h y d r o x i d e o r i o n e x c h a n g e r e s i n . T h e i n d i v i d u a l s u g a r s a r e s e p a r a t e d b y p a p e r , l i q u i d , o r gas c h r o m a t o g r a p h y ( G C ) . P a p e r c h r o m a t o g r a p h y has b e e n t h e s t a n d a r d m e t h o d for m a n y years a n d a l l the i n d i v i d u a l sugar data a n d h e m i ­ cellulose data r e p o r t e d i n the tables of this chapter w e r e o b t a i n e d b y t h i s m e t h o d [ a d o p t e d as T a p p i P r o v i s i o n a l Test M e t h o d Τ 2 5 0 (37)]. T h i s m e t h o d u s e s a m o d i f i e d f o r m o f t h e S o m o g y i c o l o r i m e t r i c assay f o r r e d u c i n g s u g a r s (38). T i m e l l (39) r e p o r t s a c o l o r i m e t r i c m e t h o d i n w h i c h the r e d u c i n g sugars are reacted w i t h 2 - a m i n o b i p h e n y l h y d r o ­ c h l o r i d e . T h e r e a r e m a n y o t h e r assay m e t h o d s f o r r e d u c i n g s u g a r s . 2

4

Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

2

4

Sugar separation b y G C requires the preparation of volatile de­ rivatives. T a p p i Test M e t h o d Τ 249 p m - 7 5 uses t h e a l d i t o l acetate d e r i v i t i z a t i o n (40). P e r a c e t y l a t e d a l d o n i t r i l e (41) o r t r i m e t h y l s i l a n e (42, 43) d e r i v a t i v e s c a n a l s o b e p r e p a r e d a n d s e p a r a t e d b y G C . W o o d sugar analysis b y G C m a y b e u s e f u l for s p e c i a l i z e d p r o b l e m s , b u t the d e r i v i t i z a t i o n steps m a k e it a t i m e - c o n s u m i n g m e t h o d for r o u t i n e work. H i g h p e r f o r m a n c e l i q u i d c h r o m a t o g r a p h y ( H P L C ) is c u r r e n t l y the most efficient m e a n s for r o u t i n e separation a n d quantification of t h e five w o o d s u g a r s (44). I n t h i s c a s e , n o d e r i v i t i z a t i o n is n e c e s s a r y , a n d s e p a r a t i o n is a c h i e v e d u s i n g w a t e r as a n e l u e n t . D e t e c t i o n is b y a differential refractometer.

UROMC ACID.

U r o n i c a c i d is d e t e r m i n e d b y m e a s u r i n g c a r b o n d i o x i d e ( C 0 ) g e n e r a t i o n w h e n w o o d is b o i l e d w i t h 1 2 % H C 1 (45). Results from this m e t h o d m a y be somewhat h i g h because of C 0 evolution from material containing carboxyl groups other than uronic a c i d . A m e t h o d d e v e l o p e d b y S c o t t (46) is r a p i d a n d s e l e c t i v e . T h e s a m p l e is t r e a t e d w i t h 9 6 % H S 0 at 7 0 ° C , a n d a p r o d u c t , 5 - f o r m y l 2 - f u r a n c a r b o x y l i c a c i d , is d e r i v e d f r o m u r o n i c a c i d s . T h i s c o m p o u n d reacts s e l e c t i v e l y w i t h 3 , 5 - d i m e t h y l p h e n o l to y i e l d a c h r o m o p h o r e a b s o r b i n g at 4 5 0 n m . 2

2

2

4

ACETYL CONTENT.

T h e a c e t y l c o n t e n t o f w o o d is d e t e r m i n e d b y saponification of the sample i n 1 Ν N a O H , followed b y acidification, quantitative distillation of the acetic acid, a n d titration of the distillate w i t h s t a n d a r d N a O H (47). A m o d i f i c a t i o n h e r e ( F o r e s t P r o d u c t s L a b ­ oratory) enables acetic a c i d d e t e r m i n a t i o n b y u s i n g G C w i t h p r o p a ­ n o i c a c i d as a n i n t e r n a l s t a n d a r d . T h i s m o d i f i c a t i o n e l i m i n a t e s t h e tedious, t i m e - c o n s u m i n g distillation step.

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

2.

WOOD SOLUBILITY IN 1 % 1% N a O H

73

The Chemical Composition of Wood

PETTERSEN

NAOH.

W o o d extraction procedures i n

( T a p p i S t a n d a r d Τ 212) e x t r a c t m o s t e x t r a n e o u s

compo­

nents, some lignin, and low molecular weight hemicelluloses

and

degraded cellulose. T h e percent of alkali-soluble material increases as t h e w o o d d e c a y s (48). T h e e x t r a c t i o n is d o n e i n a w a t e r b a t h m a i n ­ t a i n e d at 1 0 0 ° C . Lignin.

T h e l i g n i n contents of w o o d s p r e s e n t e d i n the tables

of this c h a p t e r are K l a s o n l i g n i n , t h e r e s i d u e r e m a i n i n g after s o l u bilizing the carbohydrate w i t h strong m i n e r a l acid. T h e usual p r o ­ c e d u r e , as i n T a p p i S t a n d a r d Τ 2 2 2 o r A S T M S t a n d a r d D 1 1 0 6 , is t o treat f i n e l y g r o u n d w o o d w i t h 7 2 % H S 0 2

b y d i l u t i o n to 3 % H S 0

Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

2

4

4

f o r 2 h at 2 0 ° C , f o l l o w e d

a n d b o i l i n g o r r e f l u x i n g for 4 h . A n e q u i v ­

alent b u t shorter m e t h o d treats the sample w i t h 7 2 % H S 0 2

for

1 h , f o l l o w e d b y 1 h at 1 2 0 ° C i n 3 % H S 0 2

4

at 3 0 ° C

(50). I n b o t h c a s e s

4

t h e d e t e r m i n a t i o n is g r a v i m e t r i c . Softwood l i g n i n s are i n s o l u b l e i n 7 2 % H S 0 2

4

and Klason lignin

provides an accurate measure of total lignin content. H a r d w o o d lig­ nins are s o m e w h a t soluble i n 7 2 % H S 0 , a n d the acid-soluble p o r ­ 2

4

t i o n m a y a m o u n t t o 1 0 - 2 0 % o f t h e t o t a l l i g n i n c o n t e n t (51). T h e soluble (51,

lignin

acid-

c a n b e d e t e r m i n e d s p e c t r o p h o t o m e t r i c a l l y at 2 0 5 n m

(Table X I V c o n t a i n s l i g n i n v a l u e s t h a t a d d t h e a c i d - s o l u b l e

52).

c o m p o n e n t m e a s u r e d at 2 0 5 n m t o t h e K l a s o n l i g n i n . L i g n i n c o n t e n t s of hardwoods in a l l the other tables are low).

METHOXYL.

m e t h o d (53).

M e t h o x y l groups are d e t e r m i n e d b y a m o d i f i e d

M e t h y l i o d i d e is f o r m e d b y h y d r o l y s i s o f t h e m e t h o x y l

g r o u p s o f w o o d l i g n i n i n h y d r i o d i c a c i d a n d is d i s t i l l e d u n d e r

C 0

2

into a solution of b r o m i n e a n d potassium acetate i n glacial acetic acid. B r o m i n e o x i d i z e s i o d i d e to i o d a t e w h i c h is t h e n t i t r a t e d w i t h s t a n d a r d t h i o s u l f a t e . T h e m e t h o d is d i f f i c u l t a n d t i m e - c o n s u m i n g , a n d s o m e e x p e r i e n c e is n e c e s s a r y b e f o r e s a t i s f a c t o r y r e s u l t s c a n b e D e t a i l s are i n A S T M

Standard D

obtained.

1166 a n d T a p p i S t a n d a r d Τ

( w i t h d r a w n i n N o v e m b e r 1979). A d d i t i o n a l d i s c u s s i o n c a n b e in Reference

209

found

54.

Extraneous Components W o o d Solubility.

T h e s o l u b i l i t y o f w o o d i n v a r i o u s s o l v e n t s is

a measure of the extraneous components

content. N o single solvent

is a b l e t o r e m o v e a l l o f t h e e x t r a n e o u s m a t e r i a l s . E t h e r is r e l a t i v e l y n o n p o l a r a n d e x t r a c t s fats, r e s i n s , o i l s , s t e r o l s , a n d t e r p e n e s . E t h a n o l / benzene

is m o r e p o l a r a n d e x t r a c t s m o s t o f t h e e t h e r - s o l u b l e s p l u s

most of the organic materials i n s o l u b l e i n water. H o t w a t e r extracts s o m e i n o r g a n i c salts a n d l o w m o l e c u l a r w e i g h t p o l y s a c c h a r i d e s i n ­ c l u d i n g g u m s a n d starches. W a t e r also r e m o v e s

certain hemicellu­

l o s e s s u c h as t h e a r a b i n o g a l a c t a n g u m p r e s e n t i n l a r c h w o o d (see T a ­ b l e I).

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

74

THE CHEMS ITRY OF SOLID WOOD

ETHANOL/BENZENE.

T h e solubility of w o o d i n E t O H / b e n z e n e ( b e n z e n e is a k n o w n c a r c i n o g e n ; t o l u e n e c a n b e s u b s t i t u t e d ) i n a 1 : 2 v o l u m e ratio w i l l give a measure of the extractives content. T h i s p r o c e d u r e is T a p p i S t a n d a r d Τ 2 0 4 a n d A S T M S t a n d a r d D 1 1 0 7 . T h e w o o d m e a l is r e f l u x e d 6 - 8 h i n a S o x h l e t f l a s k , a n d t h e w e i g h t loss o f t h e e x t r a c t e d , d r i e d w o o d is m e a s u r e d . S o m e t i m e s t h e l i g n i n , c a r b o h y d r a t e , a n d o t h e r c o m p o n e n t s are d e t e r m i n e d o n w o o d that h a s b e e n e x t r a c t e d p r e v i o u s l y w i t h E t O H / b e n z e n e (see T a b l e X I I I ) .

Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

DIETHYL ETHER.

T h e s o l u b i l i t y o f w o o d i n d i e t h y l e t h e r is d e ­ t e r m i n e d i n t h e s a m e w a y as E t O H / b e n z e n e s o l u b i l i t y . Ash Analysis. A s h a n a l y s i s is p e r f o r m e d a c c o r d i n g to T a p p i Standard Τ 1 5 a n d A S T M S t a n d a r d D 1 1 0 2 . I n these standards ash is d e f i n e d as t h e r e s i d u e r e m a i n i n g a f t e r d r y i g n i t i o n o f t h e w o o d at 5 7 5 ° C . E l e m e n t a l c o m p o s i t i o n o f t h e a s h is d e t e r m i n e d b y d i s s o l v i n g the residue i n strong H N 0 and analyzing the solution by atomic absorption or atomic emission. T h e inorganic elemental composition of w o o d can be d e t e r m i n e d directly b y n e u t r o n activation analysis. (Table X V c o n t a i n s e l e m e n t a l d a t a u s i n g b o t h m e t h o d s ) . 3

Silica ( S i 0 ) content i n w o o d can be d e t e r m i n e d by treating the a s h w i t h h y d r o f l u o r i c a c i d ( H F ) to f o r m t h e v o l a t i l e c o m p o u n d s i l i c o n t e t r a f l u o r i d e ( S i F ) . T h e w e i g h t loss is t h e a m o u n t o f s i l i c a i n t h e a s h . S i l i c a is r a r e l y p r e s e n t i n m o r e t h a n t r a c e a m o u n t s i n t e m p e r a t e c l i m a t e w o o d s , b u t c a n v a r y i n t r o p i c a l w o o d s f r o m a m e r e t r a c e to as m u c h as 9 % . M o r e t h a n 0 . 5 % s i l i c a i n w o o d is h a r m f u l t o c u t t i n g tools ( 5 5 ) . 2

4

Moisture Content. T h e m o i s t u r e c o n t e n t o f w o o d is d e t e r ­ m i n e d b y m e a s u r i n g t h e w e i g h t loss a f t e r d r y i n g t h e s a m p l e at 1 0 5 °C. U n l e s s specified otherwise, the percent of all other c h e m i c a l c o m p o n e n t s i n w o o d is c a l c u l a t e d o n t h e b a s i s o f m o i s t u r e - f r e e w o o d . M o i s t u r e c o n t e n t is d e t e r m i n e d o n a s e p a r a t e p o r t i o n o f t h e s a m p l e not u s e d for the o t h e r analyses.

Recent Improvements in Techniques T h e data reported i n this chapter w e r e obtained using standard methods. T h e m e t h o d s are r o u t i n e b u t r e q u i r e m u c h care a n d t i m e . S o m e methods have b e e n r e p l a c e d b y better, m o r e efficient methods. F o r e x a m p l e , t h e h o l o c e l l u l o s e , c e l l u l o s e , a n d p e n t o s a n tests h a v e b e e n r e p l a c e d b y t h e s i n g l e five-sugar c h r o m a t o g r a p h i c t e s t . T h e five-sugar test p r o c e d u r e gives m o r e d e t a i l e d i n f o r m a t i o n i n a shorter t i m e . T h e r e c e n t c h a n g e f r o m p a p e r c h r o m a t o g r a p h y t o H P L C has i m p r o v e d t h e efficiency o f this test. T h e test for K l a s o n l i g n i n r e m a i n s i n u s e , as d o t h e a c e t y l , m e t h o x y l , a n d u r o n i c a c i d t e s t s . A n a l y t i c a l i n s t r u m e n t s a n d d a t a p r o c e s s o r s h a v e h e l p e d to r e ­ m o v e s o m e o f t h e t e d i u m a n d to s h o r t e n analysis t i m e . T h e r e s u l t has b e e n a n i n c r e a s e i n t h e n u m b e r o f a n a l y s e s p e r f o r m e d . M o r e

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

2.

PETTERSEN

The Chemical

Composition

of Wood

75

Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

s i g n i f i c a n t is t h e d e t a i l p o s s i b l e w i t h a d v a n c e d i n s t r u m e n t s . F o r e x ­ ample, H P L C can separate a n d quantitate i n d i v i d u a l u r o n i c acids. This provides more detail of hemicellulose composition. T h e struc­ ture of l i g n i n can b e p r o b e d f u r t h e r b y mass spectrometry a n d h i g h resolution N M R spectrometry. W o o d extractives can be isolated a n d c h a r a c t e r i z e d b y c a p i l l a r y G C / m a s s spectrometry. A n e w mass spec­ t r o m e t e r has t w o o r m o r e mass analyzers a n d e l i m i n a t e s the often l i m i t i n g chromatographic separation step. M o r e systematic w o o d composition studies are n e e d e d i n the future. It w o u l d b e useful to s t u d y the c o m p o s i t i o n of a select n u m b e r of p r o m i n e n t species a n d note the content variability w i t h tree parts, c l i m a t e , soil c o n d i t i o n s , a n d age.

Tables of Composition Data Tables I I I - X I V are o r g a n i z e d geographically a n d list c h e m i c a l c o m p o s i t i o n d a t a f o r w o o d s f r o m v a r i o u s c o u n t r i e s . T h e d a t a as p u b ­ l i s h e d o r i g i n a l l y w e r e o f i n t e r e s t to the l o c a l p u l p a n d p a p e r i n d u s ­ tries. T h i s c o m p i l a t i o n p r o v i d e s a w o r l d w i d e v i e w of w o o d c o m p o ­ sition. M o s t o f t h e d a t a w e r e o b t a i n e d u s i n g s i m i l a r test m e t h o d s ( T a p p i S t a n d a r d s ) . W h e n i t is k n o w n t h a t o t h e r t e s t m e t h o d s w e r e u s e d , t h e m e t h o d is f o o t n o t e d i n t h e t a b l e s . M o s t o f t h e v a l u e s r e ­ p o r t e d f r o m a l l s o u r c e s h a d o n e o r t w o figures b e y o n d t h e d e c i m a l p o i n t . E x c e p t for t h e e t h e r s o l u b i l i t y a n d a s h v a l u e s (usually less t h a n 1%), v a l u e s h a v e b e e n r o u n d e d o f f t o t h e n e a r e s t p e r c e n t b e c a u s e t h i s r e f l e c t s t h e p r e c i s i o n o f t h e s a m p l i n g a n d assay m e t h o d s . T h e data i n Table III have not b e e n p u b l i s h e d previously. T h e same test m e t h o d s w e r e u s e d for a l l tree species i n Table I I I . M o s t o f t h e s e m e t h o d s w e r e d e v e l o p e d at t h e l a b o r a t o r y a n d w e r e l a t e r a d o p t e d as T a p p i s t a n d a r d s . T a b l e s I V - X I I c o n t a i n s i m i l a r d a t a o b ­ t a i n e d i n m a n y test laboratories. T h e t h r e e Taiwanese sources c o n t a i n data for m o r e t h a n 4 0 0 trees. T h e trees s e l e c t e d for i n c l u s i o n i n Table X w e r e those d e s c r i b e d i n a book p u b l i s h e d b y the C h i n e s e F o r e s t r y A s s o c i a t i o n (56). T a b l e X I I c o n t a i n s d a t a o n t r e e s o f u n r e c o r d e d o r ­ i g i n . E x c e p t f o r Tectonia grandia, the species r e p o r t e d do not appear in the other tables. Tables X I I I a n d X I V p r e s e n t m o r e d e t a i l e d analyses of woods: Table X I I I contains data o n 30 N o r t h A m e r i c a n species, a n d Table X I V contains data o n 32 species f r o m the southeastern U n i t e d States. T h e lignin values i n Table X I V are the s u m of K l a s o n a n d acid-soluble l i g n i n s . P e c t i n ( T a b l e X I V ) is m a i n l y g a l a c t u r o n i c a c i d . I t is t h e m e a ­ sured total uronic acid value m i n u s the estimated glucuronic acid value. G l u c u r o n i c acid content can be estimated from the xylan con­ t e n t b y a s s u m i n g a r a t i o o f x y l o s e to 4 - O - m e t h y l g l u c u r o n i c a c i d o f 10:1 (see T a b l e I and F i g u r e 5). T h e r e p o r t e d v a l u e s o f t h e c a r b o -

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

(Wangenh.) K . K o c h / Bitternut h i c k o r y Carya glaubra ( M i l l . ) Sweet/ Pignut h i c k o r y Carya ovata ( M i l l . ) K . K o c h / Shagbark h i c k o r y

Acer macrophyllum Pursh/ Bigleaf m a p l e Acer negundo L . / B o x e l d e r Acer rubrum L . / R e d m a p l e Acer saccharinum L./Silver maple Acer saccharum Marsh./Sugar maple Alnus rubra B o n g . / R e d a l d e r Arbutus menziesii P u r s h / Pacific m a d r o n e Betula alleghaniensis Britton/ Yellow b i r c h Betula nigra L . / R i v e r b i r c h Betula papyrifera Marsh./ Paper b i r c h Carya cordiformus

0

44

— 64 (2) 57 63 (3)



73

78 (2)

44 49 (2) 48

56

— —



71 (2)

71

45(5)

47(2) 41

44(3)

45

60

74 (2)

42

56



47(3)

46 45 61 (2)

b

Alpha Cellulose

77 (3)

0

Holocellulose

Cross and Bevan Cellulose

Carbohydrate

18

17(2)

19

23(5)

23 (2) 23

23

20 (3)

17

19

18(3)

22 20

Hardwoods

1

sans'

Pento-

21

24 (2)

25

18(5)

21(2) 21

21

22 24(3)

21

25 30 21 (3)

Klason Lignin

18

17(2)

16

17(4)

16(2) 21

23

16(3)

15

21

16(3)

10

18

1% NaOH

5

5(2)

5

2(4)

2(2) 4

5

3 3(3)

4

3(3)

2

Hot Water

3

4(2)

4

3(4)

2(2) 2

7

2(3)

3

3

2(3)

3

EtOHl Benzene

Solubility

0.4

0.4 (2)

0.5

1.4 (4)

1.2 (2) 0.5

0.4

0.5 (3)

0.5

0.6

0.7 (3)

0.7 0.4

Ether

0.6

0.8 (2)



0.3 (2)

0.7 (2)

0.7

0.2 0.3 (3)



0.4 (3)

0.5

Ash

T a b l e III. C h e m i c a l C o m p o s i t i o n o f U . S . W o o d s as D e t e r m i n e d at U . S . F o r e s t Products L a b o r a t o r y f r o m 1927 to 1968

Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

triacanthos

H o n e y locust Laguncuhria racemosa (L.) Gaertn./White mangrove Liquidambar styraciflua L./ Sweetgum Liriodendron tulipifera L . / Yellow-poplar Lithocarpus densiflorus (Hook. & A m . ) R e h d . / Tanoak Milalenca quinquenervia (Cav.) S. T . B l a k e / C a j e p u t Nyssa aquatica L./Water tupelo Nyssa sylvatica M a r s h . / B l a c k tupelo Populus alba L . / W h i t e p o p l a r Populus deletoides Bartr. ex M a r s h . / E a s t e r n cotton w o o d

Gleditsia

L./

pennsylvanica

M a r s h . / G r e e n ash

Fraxinus

f./— Fagus grandifolia Ehrh./ American beech Fraxinus americana L./White ash

Mockernut hickory Celtis laevigata W i l l d . / Sugarberry Eucalyptus gigantea H o o k .

Carya pallida (Ashe) E n g l . & G r a e b n . / S a n d hickory Carya tomentosa (Poir.) N u t t . /

51



46(3)

45(2) 45(5) 52

60 (3) 62

— 56 59 (2) 57(4) 67 64(3)





71(2)









72

45

52



47(3)

43

46 (4)

40

— 52

40 (4)

41

49 (2)

49

(2)



53(4)

61(2)

77 (2)





40

48

— 54

50



72

71 (2)

69

18(3)

17(4) 23

16(2)

19

20 (2)

19

20 (4)

19

22

18(4)

15

20 (2)

14

22

18 (2)

17

23 (3)

27(5) 16

24 (2)

27

19 (3)

20

21(4)

23

21

26(4)

26

22 (2)

22

21

21(2)

23

15(3)

15(5) 20

16(2)

21

20 (3)

17

15(4)

29

19

19 (4)

16

14 (2)

16

23

17(2)

18

2(3)

3(5) 4

4(2)

4

5(2)

2

3(3)

15



7(4)

7

2(2)

7

6

5(2)

7

Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

2(3)

2(5) 5

3(2)

2

3(2)

1

2(4)

6



5(4)

5

2(2)

4

3

4(2)

4

Continued

0.8

0.4 0.9

0.6

0.5

0.4

0.2

0.7

2.1

0.4

0.4

0.5

0.8

0.3

0.3

0.4

0.4

(2)

(5)

(2)

(2)

(3)

(4)

(2)

0.4

0.5

0.6



0.7

1.0

0.3









0.4

0.2



0.6

(2)

(2)

(3)

(2)

on next page

(2)

1.0

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

Michx./

Name

42 37 43

44 47

— — — — 57

— — 55

69

60 70





76

69



Quercus marylandica M u e n c h h . / B l a c k j a c k oak Quercus prinus L . / C h e s t n u t oak

Quercus rubra L . / N o r t h e r n r e d oak

Wangenh./

fobata N e e / V a l l e y oak lyrata W a l t . / O v e r c u p

Quercus stellata Post oak

Quercus Quercus oak

41

46

40

40



46

59

Quercus fahata M i c h x . / Southern r e d oak Quercus kelloggii N e w b . / California black oak

Hook &



47 (2)

63

45

60



(20)

85 67 (2)

49

49



(13)

0



65

Quercus douglasii A r n . / B l u e oak

Ehrh./Black

78 (9)

13

Alpha Cellulose

Quercus alba L . / W h i t e oak Quercus coccinea M u e n c h h . / Scarlet oak

Prunus serotina cherry

Populus trichocarpa Ton*. & Gray/Black cottonwood

Populus tremoides Q u a k i n g aspen

Scientific Name/Common

Holocellufose°

Cross and Bevan Cellulose

Carbohydrate

18

22

19

20

18

23 19

20

22

18

e

e

e

20 (2)

20

19

19 (19)

1

24

24

24

26

28

26 19

25

27

28

27 (2)

21

21

19 (22)

Lignin

Klason

Continued

Pentosans'

T a b l e III.

21

22

21

15

24

26 23

17

23

20

19 (2)

18

18

18 (15)

1% NaOH Hot

8

6

7

5

9

10 5

6

11

6

6(3)

4

3

3(15)

EtOHl

4

5

5

4

5

5 7

4

5

3

3(2)

5

3

3(14)

Benzene

Solubility

Water

Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

0.5

1.2

0.6

0.6

1.2

1.5 1.0

0.3

1.4

0.4

0.9 0.5

0.7

1.2

(2)

(15)

Ether

1.2

0.4

0.4

0.3

0.4 0.9

0.4

1.4

0.4

0.1

0.5

0.4

(11)

Ash

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

Nutt./Cedar

L./American

Vent./

Torr./

W h i t e spruce

Picea engelmanni Parry ex E n g e l m . / E n g e l m a n spruce Picea gfauca ( M o e n c h ) Voss/

Incense cedar

W e s t e r n larch Libocedrus decurrens

Chamaecyparis thyoides ( L . ) B . S . P./Atlantic white c e d a r Juniperus deppeana S t e u d . / Alligator j u n i p e r Larix larcina ( D u Roi) Κ. Koch/Tamarack Larix occidentalis Nutt./

fir

(Hook.) Nutt./

S u b a l p i n e fir Abies procera R e h d . / N o b l e

W h i t e fir Abies lasiocarpa

Abies amabilis D o u g l . ex Forbes/Pacific silver fir Abies balsamea (L.) M i l l . / Balsam fir Abies concolor ( G o r d . & G l e n d . ) L i n d l . ex H i l d e b r . /

elm Ulmus crassifolia elm

willow Tilia heterophyUa Bas s w o o d Ulmus americana

Quercus velutina Lam./Black oak Salix nigra M a r s h . / B l a c k



69

(4) 61

60



(8)

(2) 43(8)

45(6)

37

48

56

65

56

44(3)



64(3) (3)

40



57

(3)

41

53

(2)

(16)

46(4) 43

49

42

44(3)

50

50(3)

48

46(2)

48



— —



66

67(4) 61

58

— (16)

61(3)

61(3)



73

65

61(2)



77



71

(16)

13(7)

10(6)

(6)

(3)

(3)

(4)

(16)

(3)

(3)

29(8)

28

34

27

9(3) 12

26

34

33

29 29

28

29

29

27

22

20

21(2)

24

8(3)

5

9

9(4) 9

6

11

10(3)

Softwoods

19

17(3)

17

19(2)

20

(16)

12(8)

11(6)

3(8)

2(6)

3

6(3)

16(3) 9

7

3

3

3(4) 2

5

4(16)

3(3)

3(3)

2

4(2)

6

14(3)

16

16

12(4) 10

13

11

11(3)

14

16(3)

20

19 (2)

18

Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

2(8)

2(6)

3

2(3)

3(3)

7

6

3(4) 3

2

(3)

0.8

1.1

(2)

0.4

(2) (2)

0.2 0.3

0.3

(2)

(4)

(15)

0.3

0.3



0.5 0.4

0.4

0.4

0.4

0.4

0.7



0.2

on next page

(8)

1.1(6)

0.8

(3)

(4)

(16)

(3)

(3)

(2)

0.9

2.4

2.4

0.6 0.6

0.3

1.0

0.7

0.3

0.5

2.1

0.6

0.2

Continued

3(16)

3(3)

2(3)

4

2(2)

5

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

Name/Common

Name

Le mm./

(Bong.) C a r r . /

64(3)

69 (3)



Pinus monticola D o u g l . ex D . Don/Western white pine

Pinus palustris pine

D o u g l . ex

Laws./Ponderosa pine

Pinus ponderosa

Mill./Longleaf

68

69

Engelm./Slash

Pinus elliottii pine

(11)

(13)

58

59 (7)

61(4)

59

60(8)

59 (7)

57(3)



68

58

66 (6)

(25)

(19)



62

60

1







1

Loud./Lodgepole pine Pinus echinata M i l l . / S h o r t l e a f pine

Knobcone pine Pinus banksiana L a m b . / J a c k pine Pinus clausa ( C h a p m . ex E n g e l m . ) Vasey ex S a r g . / Sand p i n e Pinus contorta D o u g l . ex

Picea sitchensis Sitka spruce Pinus attenuata

Picea mariana ( M i l l . ) B . S . P . / Black spruce

Scientific

Holocellulose'

Cross and Bevan Cellulose ' 0

(27)

(20)

(11)

(15)

41

(2)

44(5)

43(7)

46

45(9)

45

44 (4)

43

47

45

43

Alpha Cellulose

Carbohydrate

(27)

(19)

(11)

(15)

9(2)

12 (7)

9(7)

11

12(9)

10

11(4)

13

14

7

12

(27)

(20)

(11)

(15)

26 (2)

30 (6)

25(7)

27

28(9)

26

27(4)

27

27

27

27

Klason Lignin

Continued

Pentosans*

T a b l e III.

(27)

(20)

(11)

(15)

16 (2)

12 (7)

13(6)

13

12(9)

13

12(2)

13

11

12

11

1% NaOH

(26)

(20)

4(2)

3(5)

4(6)

3(15)

2(9)

4(11)

2(2)

3

3

4

3

(20)

5(2)

4(7)

4(6)

4(15)

4(9)

3(11)

3(2)

5(27)

1

4

2

EtOHl Benzene

Solubility Hot Water

Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

5.5

1.4

2.3

3.3

2.9

1.6

1.0

3.0



0.7

1.0

(2)

(7)

(6)

(15)

(9)

(11)

(26)

(20)

Ether

0.5



0.2

0.2

0.4

0.3

0.4

0.3

0.2



0.3

Ash

(3)

(3)

(2)

(11)

(7)

(19)

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.





43

7

27



60

(22)

29

(22)

9

(22)

42

58

67 (2)

(22)

33 (7)

9(4)

41 (7)

32

30

55 (7)

e

33

33 33

12

5

5

(22)

4

(22)

4

14

(22)

3(7)

14

6

5

10 —IrHCNI

ι—I CM

oq I I CD

oq

N C O O Î H N M N O O O O I O l > l > l > 00 t> l > CD t> 00 l > 00

O O 00 00

00 Η I i n CD

oq CD

ε

s

1

S

I

ι 00

2

« a i t -i e ^ „ et ^ Q ^ ^ δ

bn

J

N

δ ο ·»5 σ ί>

CD E S

,3

'3D

ι O

| | cq Η

I-H

2:

S -S

i—J CD ^

3

sS **·«» co

in ^

1

ο

-s

Q 3 l

O

CM

I> CD

!>

oo CD

CD

24.2 ± 3.4(46) 8.8 ± 2.5(12)

28.6 ± 3.6(39)>

28.5 ±

31.7 ± 3.8(10)>

9.8 ± 2.2(35)

19.3 ± 2.2(49)

N O T E : Values are m e a n ± standard d e v i a t i o n ( n u m b e r o f data). H o l o c e l l u l o s e is t h e total carbohydrate content o f w o o d . A l p h a cellulose is nearly p u r e cellulose. Pentosans are the total anhydroxylose a n d arabinose residues i n w o o d . Cross a n d B e v a n cellulose is largely p u r e cellulose b u t contains some hemicelluloses. K u r s c h n e r cellulose is nearly p u r e cellulose. f O n e value o f 4 . 6 % not i n c l u d e d . M o d i f i e d K u r s c h n e r cellulose. M o d i f i e d C r o s s a n d B e v a n cellulose. ' P u r e glucan calculated from glucose a n d m a n n o s e content. H e m i c e l l u l o s e s c a l c u l a t e d from five-sugar, acetyl, a n d u r o n i c a c i d content. Klason l i g n i n + a c i d - s o l u b l e l i g n i n . O n e value o f 5 . 4 % not i n c l u d e d .

Hardwoods Softwoods





Softwoods

U . S . A . (Table X I V ) U . S . S . R . (Table XI)



Hardwoods

(Table XIII)

U . S . A . and Canada

71.7 ± 5.7(25)

6 4 . 5 ± 4.6(22)

Hardwoods

Softwoods

U . S . A . (Table III)

Table X V I . Continued

Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

23.0 ± 3.0(40)

1.8(11)

21.9 ± 3.2(47) 29.0 ± 1.6(15)

24.5 ± 3.0(39)*

29.2 ± 2.0(19)

22.5 ±

28.8 ± 2.6(35)

0.6 ± 0.4(45)' 0.5 ± 0.4(16)

0.4 ± 0.3(39)

0.3 ± 0.2(19)

0.4 ± 0.2(11)

0.3 ± 0.1(30)

0.5 ± 0.3(34)

X2

m

X

H

to to

2.

PETTERSEN

The Chemical Composition of Wood

123

Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

hydrate components i n Table X I V have b e e n adjusted b y a hydrolysisloss factor. T h i s f a c t o r w a s c a l c u l a t e d f o r e a c h s p e c i e s , s u c h t h a t t h e s u m of total extractives, lignin, cellulose, hemicellulose, a n d ash equals 1 0 0 % . T h e hemicellulose components were calculated using t h e a d j u s t e d v a l u e o f t h e five i n d i v i d u a l s u g a r s a n d t h e m e a s u r e d values for acetyl a n d u r o n i c acid. Table V I I reports t h e trace e l e m e n t composition of some woods. C a l c i u m , potassium, magnesium, a n d phosphorus are the principal trace elements i n t e m p e r a t e woods. T h e three tropical w o o d s have a higher potassium a n d magnesium content a n d a lower calcium con­ tent than the temperate woods. Table X V I is a s u m m a r y o f average w o o d c o m p o s i t i o n i n 13 c o u n ­ tries. T h e m e a n , standard deviation, a n d n u m b e r o f data are t a b u ­ lated for carbohydrate, l i g n i n , a n d ash compositions. H a r d w o o d s a n d softwoods are separated w h e n b o t h are available. A l l other values are o n l y for hardwoods. B e careful c o m p a r i n g values b e t w e e n countries because techniques a n d m e t h o d s vary. F o r e x a m p l e , t h e m e a n h o l o c e l l u l o s e c o n t e n t o f C o s t a R i c a n h a r d w o o d s is 7 8 . 1 % , h i g h e r t h a n that o f w o o d s f r o m B r a z i l (71.7%) a n d M e x i c o (67.8%). T h e h o l o c e l lulose d e t e r m i n e d for the C o s t a Rican hardwoods probably contained s o m e l i g n i n . T h e m e a n v a l u e o f Taiwanese h a r d w o o d h o l o c e l l u l o s e is obviously h i g h (83.3%) because t h e means for holocellulose a n d l i g n i n s u m to 1 0 8 % .

Literature Cited 1. Hegnauer, R. "Chemotaxonomie der Pflanzen," Volumes I - V I ; Birkhäuser Verlag: Basel and Stuttgart, 1962-1973. 2. Gibbs, R. Darnley "Chemotaxonomy of Flowering Plants," Volumes 1-4; McGill-Queens University Press: Montreal and London, 1974. 3. Wise, L. E.; Murphy, M.; D'Addieco, A. A. Pap. Trade J. 1946, 122(2), 35-43. 4. Fengel, Dietrich; Grosser, Dietger Holz Roh- Werkst. 1975, 33(1), 32-34. 5. Goring, D. A. I.; Timell, T. E. Tappi 1962, 45(6), 454-60. 6. Sjöström, Eero "Wood Chemistry. Fundamentals and Applications"; Academic Press: New York, 1981; p. 56, 65. 7. Billmeyer, F. W., Jr. J. Polym. Sci., Part C 1965, No. 8, 161-78. 8. Gardner, Κ. H.; Blackwell, J. Biochim. Biophys. Acta 1974, 343, 232-37. 9. Kolpak, F. T.; Blackwell, J. Macromolecules 1976, 9(2), 273-78. 10. Kolpak, F. J.; Weik, M.; Blackwell, J. Polymer 1978, 19, 123-31. 11. Timell, T. E. Wood Sci. Technol. 1982, 16, 83-122. 12. Timell, T. E. Wood Sci. Technol. 1967, 1, 45-70. 13. Timell, T. E. Adv. Carbohydr. Chem. Biochem. 1964, 19, 247-302. 14. Timell, T. E. Adv. Carbohydr. Chem. Biochem. 1965, 20, 409-83. 15. Adler, Erich Wood Sci. Technol. 1977, 11, 169-218. 16. Leopold, B.; Malmström, I. L. Acta Chem. Scand. 1952, 6, 49-54. 17. Obst, John R. Tappi 1982, 65(4), 109-12. 18. Nimz, H. Angew. Chem., Int. Ed. Engl. 1974, 13, 313-21. 19. Creighton, R. N. J.; Hibbert, H. J. Am. Chem. Soc. 1944, 66, 37-38. 20. Larsson, Sam; Miksche, Gerhard E. Acta Chem. Scand. 1967, 21(7), 1970-71.

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

124

Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

Κ.

T H E CHEMISTRY O F SOLID W O O D

21. Björkman, Anders Sven. Papperstidn. 1956, 59(13), 477-85. 22. Chang, H.-M.; Cowling, E. B.; Brown, W.; Adler, E.; Miksche, G. Holzforschung 1975, 29(5), 153-59. 23. Pew, John C. Tappi 1957, 40(7), 553-58. 24. Freudenberg, K.; Neish, A. C. "Constitution and Biosynthesis of Lignins"; Springer-Verlag: Berlin and New York, 1968; p. 113. 25. "Lignins: Occurrence, Formation, Structure and Reactions"; Sarkanen, V.; Ludwig, C. H., Eds.; Wiley-Interscience: New York, 1971. 26. "Wood Extractives"; Hillis, W. E., E d . ; Academic Press: New York, 1962. 27. Rowe, John W.; Conner, Anthony H. "Extractives in Eastern Hardwoods­ A Review"; General Technical Report FPL 18, Forest Products Labora­ tory, Madison, WI, 1979. 28. Meier, H.; Wilkie, K. C. B. Holzforschung 1959, 13(6), 177-82. 29. Meier, Hans J. Polym. Sci. 1961, 51, 11-18. 30. Scott, J. A. N.; Procter, A. R.; Fergus, B. J.; Goring, D. A. I. Wood Sci. Technol. 1969, 3, 73-92. 31. Fergus, B. J.; Procter, A. R.; Scott, J. A. N.; Goring, D. A. I. Wood Sci. Technol. 1969, 3, 117-38. 32. Fergus, B. J.; Goring, D. A. I. Holzforschung 1970, 24(4), 118-24. 33. Obst, John R. Holzforschung 1982, 36(3), 143-53. 34. Van Beckum, W. G.; Ritter, G. J. Pap. Trade J. 1937, 105(18), 127-30. 35. Wise, L. E.; Jahn, E. C. "Wood Chemistry," 2d ed.; Reinhold: New York, 1952; pp. 1148-52. 36. Browning, B. L. "Methods of Wood Chemistry," Volume II; Interscience: New York, 1967; pp. 406, 615-24. 37. Saeman, J. F.; Moore, W. E.; Mitchell, R. L.; Millett, M. A. Tappi 1954, 37(8), 336-43. 38. Nelson, N. J. Biol. Chem. 1944, 153, 375-80. 39. Simson, B. W.; Timell, T. E. Tappi 1967, 50(10), 473-77. 40. Borchardt, L. G.; Piper, C. V. Tappi 1970, 53(2), 257-60. 41. Seymour, F. R.; Chen, E. C. M.; Bishop, S. H. Carbohydr. Res. 1979, 73, 19-45. 42. Sweeley, C. C.; Bentley, Ronald; Makita, M.; Wells, W. W. J. Am. Chem. Soc. 1963, 85, 2497-507. 43. Brower, H. E.; Jeffery, J. E.; Folsom, M. W. Anal. Chem. 1966, 38(2), 36264. 44. Wentz, F. Ε.; Marcy, A. D.; Gray, M. J. J. Chromatogr. Sci. 1982, 20, 349-52. 45. Bylund, M.; Donetzhuber, A. Sven. Papperstidn. 1968, 71(15), 505-8. 46. Scott, R. W. Anal. Chem. 1979, 51(7), 936-41. 47. Wisenberger, E. Makrochem. 1947, 33, 51-69. 48. Procter, A. R.; Chow, W. M. Pulp Pap. Mag. Can. 1973, 74(7), 97-100. 49. Effland, Marilyn J. Tappi 1977, 60(10), 143-44. 50. Musha, Y.; Goring, D. A. I. Wood Sci. 1974, 7(2), 133-34. 51. Schöning, Arnt G.; Johansson, Gösta Sven. Papperstidn. 1965, 68(18), 60713. 52. Swan, Brita Sven. Papperstidn. 1965, 68(22), 791-95. 53. Zeisel, S. Monatsh. Chem. 1885, 6, 989-96. 54. Steyermark, A. "Quantitative Organic Microanalysis"; 2d ed.; Academic Press: New York, 1961; p. 422-43. 55. Koeppen, Robert C. in "Papers for Conference on Improved Utilization of Tropical Woods"; Forest Products Laboratory: Madison, WI, 1978; p. 33. 56. Chinese Forestry Association "Important Wood Species of Taiwan"; Taipei, Taiwan, 1967. 57. Corrêa, Α. Α.; Ribeiro, E. B. P.; Lobato, R. de F. Assoc. Téc. Bras. Cellul. Pap. Bol. 1970, 31, 95-138. 58. Lauer, Karl Tappi, 1958, 41(7), 334-35. 59. Barrichelo, L. E. G.; Brito, J. O. IPEF 1976, 13, 9-38.

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

2.

PETTERSEN

The Chemical Composition of Wood

125

60. U.S. Forest Products Laboratory, unpublished data for 1948-1957 on file at Madison, WI. 61. Inoue, Hideo; Masao, Moriya; Akiyama, Takeshi J. Jpn. Tappi 1972, 26(6), 256-62. 62. Wise, Louis E.; Rittenhouse, Ruth C.; Dickey, Edgar E.; Olson, Harry O.; Garcia, Consuelo J. For. Prod. Res. Soc. 1952, 2(5), 237-49. 63. Wise, Louis E.; Rittenhouse, Ruth C.; Garcia, Consuelo Tappi 1951, 34(4), 185-88. 64. Smith, J. B.; Primakov, S. F. Appita 1977, 30(5), 405-6. 65. Oliveira, J. Santos Rev. Cien. Agron. 1971, Ser. B4, No. 3, 3-32. 66. Satonaka, Seiichi J. Jpn. Wood Res. Soc. 1963, 9, 26-34. 67. Yonezawa, Yasumasa; Kayama, Tsutomu; Kikuchi, Fumihiko; Usami, Ku­ ninori; Takano, Isao; Ogino, Takeniko; Honda, Osamu Bull. Gov. For. Exp. Stn. (Jpn.) 1973, 253, 55-99. 68. Kayama, Tsutomu; Kikuchi, Fumihiko; Takano, Isao; Usami, Kuninori Bull. Gov. For. Exp. Stn. (Jpn.) 1967, 197, 155-62. 69. Kayama, Tsutomu J. Jpn. Tappi 1968, 22(11), 581-90. 70. Working Group on Utilization of Tropical Woods Bull. Gov. For. Exp. Stn. (Jpn.) 1977, 294, 1-49. 71. Working Group on Utilization of Tropical Woods Bull. Gov. For. Exp. Stn. (Jpn.) 1978, 299, 85-104. 72. Εddowes, Peter J. "Commercial Timbers of Papua New Guinea"; Hebamo Press: Port Moresby, Papua New Guinea, 1977. 73. Reyes, Luis J. "Philippine Woods"; Bureau of Printing: Manila, 1938; p. 479-82. 74. Francia, P. C.; Escolano, E. U.; Bautista, C. S.; Semana, J. A. Philippine Lumberman 1971, 17(5), 21-24. 75. Escolano, Eugenia U . ; Semana, Jose A. Philippine Lumberman 1978, 24(12), 16-20. 76. Escolano, E. U.; Francia, P. C.; Semana, J. Α.; Bawagan, B. O. Philippine Lumberman 1970, 16(12), 26-28. 77. U.S. Forest Products Laboratory, unpublished data on file at Madison, WI. 78. Semana, J. Α.; Escolano, E.; Francia, P. C.; Bautista, C. S. Philippine Lum­ berman 1968, 14(2), 20-25. 79. Francia, P. C.; Escolano, E. U.; Semana, J. Α.; Bawagan, B. O. Philippine Lumberman 1970, 16(11), 26-30. 80. Chao, S. C.; K u , Y. C.; L i n , S. J.; Pan, T. T. Bull. Taiwan For. Res. Inst. (Co-Op. Taiwan For. Bur.) No. 14, 1971, Taipei, Taiwan. 81. Ku, Y. C. Bull. Taiwan For. Res. Inst. (Co-Op. Taiwan For. Bur.) No. 142, 1966, Taipei, Taiwan. 82. K u , Y. C.; Haung, L. Y.; L i n , T. N.; Pan, T. T. Co-Op. Bull. Taiwan For. Res. Inst. Co-Op. Natl. Sci. Counc., Jt. Comm. Rural Reconstr., Taiwan For. Bur. No. 8, 1965, Taipei, Taiwan. 83. Sieber, R.; Walter, L. E. Papier-Falst. 1913, 11, 1179-83. 84. Nikitin, Ν. I. "The Chemistry of Cellulose and Wood"; trans. from Russian by J. Schmorak. Israel Program for Scientific Translations, Jerusalem, 1966. First published in Russian in 1962. 85. Campbell, W. G.; Bamford, K. F. J. Soc. Chem. Ind., London, Trans. Commun. 1939, 58, 180-85. 86. Timell, T. E. Pulp Pap. Mag. Can. 1958, 59(8), 139-40. 87. "The Chemistry of Wood"; Browning, B. L., E d . ; Krieger: Huntington, NY, 1975; p. 70-71. 88. Moore, W. E.; Effland, M. J. Tappi 1974, 57(8), 96-98. 89. Côté, W. Α., Jr.; Simon, B. W.; Timell, T. E. Sven. Papperstidn. 1966, 69(17), 547-58. 90. Timell, T. E. Tappi 1957, 40(7), 568-72. 91. Smelstorius, J. A. Holzforschung 1971, 25(2), 33-39. 92. Smelstorius, J. A. Holzforschung 1974, 28(2), 67-73.

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.

126

T H E CHEMISTRY O F SOLID W O O D

93. Young, H. E.; Guinn, V. P. Tappi 1966, 49(5), 190-97. 94. Osterhaus, C. Α.; Langwig, J. E.; Meyer, J. A. Wood Sci. 1975, 8(1), 37074. 95. Choong, Elvin T.; Chang, Bao-Yih; Kowalczuk, Joseph "LSU Wood Utili­ zation Notes"; No. 27, December 1974. for review May 6 , 1 9 8 3 . ACCEPTED July 22, 1 9 8 3 .

Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002

RECEIVED

In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.