Transforming Subsurface Science


[PDF]Transforming Subsurface Science - Rackcdn.com4afd6f873f5f9269a871-348a28baf0e079230fb6d210b6e66dcd.r5.cf1.rackcdn.com/...

0 downloads 139 Views 3MB Size

Mind Mapping on Steroids Finding Petroleum Transforming Subsurface Science! London, 18 April 2016

Twitter diary excerpt from an information mgr. • Vast majority of information is not held on computers but in people's heads • If Information is Communication, then what is Metadata? • Monday E&P IM mantra: METADATA. METADATA. METADATA • Data, data everywhere. Hidden. [...] High value. Low awareness • Would like to take a broom to the data management techniques used blog.zolnai.ca/2010/02/standards-and-metadata-part-vii.html

What are mind maps?

Where does this come from? A little history of mine

Early projects • Mobil, Dallas TX, 1996, Landmark / Geoquest • Application rationalization prior to merger with Exxon • Geoshare data exchange workflows Finder data store  Zmap etc. • 3-way = 1 stakeholder + 2 vendors interoperability, personnel & technical

• Aera Energy, Bakersfield CA, 1998, Landmark / SAP • Application rationalization reducing hundreds of apps. to dozens • 3 mo. user interview, 3 mo. execution (1 mo. each pass with amendments) • 75 years over well as sub-acre spacing logged daily for steam flooding

• bp, Sunbury UK, 1999, Halliburton / Schlumberger • 10 TB G&G data cross-over, data to SIS & apps to Landmark • Overnight remote sync to Azerbaijan, Angola and Algeria • Workflow restructuring with indigenous staff & Geoquest

• Halliburton, Houston-London, 1999-2000 • Global team collaboration across 12 offices & 12 time zones 5

Recent projects • Shell, Rijswijk NL, 2001, ESRI

• Global licensing agreement for GIS – Geoscience interoperability • Client global team collaboration across 4 centers & 12 time zones

• Total & ENI, Paris, Pau & Milan, 2004-2007, ESRI then Petris

• GIS for oil&gas from subsurface geoscience to surface infrastructure • Workflows and training of ESRI Model Builder scripting & automation

• ExxonMobil, Leatherhead UK, 2008, GeoSolveIT • GIS training for Oil&gas

• NCOC-AGIP KCO, Milan-Atyrau, 2009, SAIC-Allegis

• Business process re-engineering of GIS & G&G systems • ESRI + Landmark + Intergraph + Documentum + Google

• Kuwaiti NOCs and JVs, 2010-2012, OpenWare (EsriKW) • Wafra Joint Operation, KOC North Fields, KUFPEC abroad • GIS training for oil&gas, enterprise agreements

• bp, Sunbury UK, 2012-2013, Wipro Oil&Gas

• Global workflow and toolkits rationalization • Business analysis and transition recommendation

6

Kashagan, Shah Deniz, Burgan, Clare and Kern River

Clockwise from top left Same scale, 50 km bar

7

Said one CDO (Chief Digital Officer) recently: • I don't go to my clients with: data this, or: standards that… • I don't ask: is our data clean?, I ask: is our asset in good shape? • I don't ask: do our data conform to standards and procedures? • I ask: is our asset meaningful and useful across our departments? • … And all of a sudden, I‘m not imposing anything on anyone! • I. Am. With. Them: helping do their job in a greater context… • Data should be treated as an asset, traded, exchanged, and moved around to help the organisation… • Perhaps we should talk to regulators in the City, and have data show up on our balance sheets... • And trading works better with standards like coins, weights & measures do elsewhere

Where are we? Examples through time

Information management workflow (Aera Energy, 1996) Business

Proj. Mgr.

Data

Data

Freeze

Migrate

Add

Δ

Data

Tech.

Rollout

Viewer = GIS + metadata

Data Mgr.

Archive / Master “Gold Copy”

Users Staging Server

Project Data

Notes

Decision tree (FAO, 2006) Départ

Hauts plateaux >800 m

Zones marécageuses

O

Culture dominante riz

N

Terres marécageuses avec un peu de culture du riz

O

N N O > T1 (bétail en grande quantité)

≥ C1 (élevée)

Présence significative des cultures

Présence de bétail

Terres marécageuses

≤ T 1 (un peu de bétail)

< C1 (faible)

O

Présence significative d’arbres

Faible densité de population rurale + Aride

N

O

Riz dominant

N

Agro-pastoral

Axé sur les terres marécageuses

Riz arbre

N

Pastoral

Axé sur la foret

Axé sur les arbres

O

Clairsemé

Bétail & cultures

Pastoral (faible intensité)

Présence de terres en culture

significative

non significative

Bétail dominant Importance du bétail ≥ T2 (significative)

O

Cultures arboricoles industrielles pérennes

Hauts plateaux pérennes

N

Dominance maïs

O

N

Autres hauts plateaux

O Présence significative de bovin

O

Présence significative de bovin

Mixtes tubercules

O

Présence significative des tubercules

Présence significative de tubercules

Maïs

O

Mixte Tempéré des hauts plateaux

Mixtes céréales & tubercules

O

Présence significative de céréales et tubercules

N

Mixtes céréales-tubercules

Présence significative de céréales et tubercules

N

Systèmes des hauts plateaux

Autres terres cultivées mixtes

Tubercules

O

Céréales & tubercules

Tubercules-céréales

N

Tempéré des hauts plateaux

O

N

N

N

N

Dominance céréales à petits grains

Mixte maïs

< T2 (non significative)

Autres terres cultivées

Replica standard workflow suite (AGIP KCO, 2009)

Exploration process optimization (Microsoft, 2010)

One Rendering of the Vision (Energistics, 2010)

"Slide Diagram Courtesy of Energistics™ The following Energistics (c) product was used in the creation of this work: Slide 4 of Energy Industry Meta Data Work Group Initiative Overview and Requirements presentation to ISO-19115 Revision Project team, Quebec City, Quebec, Nov 3-4 2009

Schlumberger CEO Paul Kibsgaard (last month) “… Based on this, we believe that project performance can only be improved by finding ways of breaking with the past and replacing the existing model with a new approach based on collaboration and commercial alignment between the operators and the largest service companies.” Scotia Howard Weil 2016 Energy Conference New Orleans, 21 March 2016

Can we wrap this all together? Linq.it early adopter

A Simple Language Enables ‘SEEING’

Focus on the Information Supply Chain OUTPUT

SOURCE

Palette

Layout

Outcome – example

Where do we go? Business process mapping

How-to • Business process first approach to resource management • Mind mapping on steroids a talking point: • to help asset teams determine workflows • and enhance resource planning operations

• Offer innovative and affordable 3D and web solutions • Start with small wins, ramp up to successful implementations

“… I wish I had this ten years ago!”

Interview

Process

Info Supply chain

Workflow

Assess Action

Info

People

System

Thank you!

Questions?